

Biological and Water Quality Assessment of the Upper Des Plaines River 2022

Trent A. Dougherty, MBI Executive Director James Lane, MBI Board President

Report citation:

Midwest Biodiversity Institute (MBI). 2024. Biological and Water Quality Assessment of the Upper Des Plaines River 2022. Lake County, Illinois. Technical Report MBI/2024-3-1. Hilliard, OH 43206. 92 pp. + appendices.

Portions of this document were made possible by a generous grant from ESRI. The GIS elements of this report were also made possible by a grant from ESRI.

Biological and Water Quality Assessment of the Upper Des Plaines River 2022

Lake County, IL

Technical Report MBI/2024-3-1

May 15, 2024

Prepared for:

Des Plaines River Watershed Workgroup 500 W. Winchester Road Ashley Strelcheck, DRWW Project Manager <u>AStrelcheck@lakecountyil.gov</u> Steve Waters, Monitoring Committee Chair <u>StWaters@northshorewrd.org</u>

Submitted by:

Midwest Biodiversity Institute 4673 Northwest Parkway Hilliard, OH 43026 Chris O. Yoder, Research Director cyoder@mwbinst.com

Contents

LIST OF TABLES
ACKNOWLEDGMENTSxi
FOREWORDxiv
What is a Biological and Water Quality Survey?xiv
Scope of the 2022 Biological and Water Quality Assessment
EXECUTIVE SUMMARY
Summary of Findings 1
Aquatic Life Condition Assessment1
Causes and Sources of Non-attainment
IPS Restorability, Susceptibility, and Threat Results5
Synthesis of Results
Recreational Use Assessment
Biological and Water Quality Assessment of the Upper Des Plaines River 2022
Study Area Description
General Landscape Setting
Major Point Sources
NPDES Permit Special Conditions
Nutrient Assessment Reduction Plan (NARP)13
Nonpoint Sources
Sampling Sites Selection and Locations14
Spatial Survey Design
METHODS
Chemical/Physical Water Quality – Methods17
Water Column Sampling17
Nutrient Effects Assessment Procedure17
Biological Assemblage Sampling
Fish Assemblage Methods
Macroinvertebrate Methods
Area of Degradation and Attainment Values
Habitat Assessment

Data Management	21
Determining Use Attainability	21
Causal Diagnosis	22
Hierarchy of Water Indicators	22
Causal Associations	24
RESULTS - CHEMICAL/PHYSICAL WATER QUALITY	24
Flow Regime	24
Point Source Effluent Quality	25
Lake Co. DPW Mill Creek WWTP	25
NSWRD Waukegan WRF	28
NSWRD Gurnee WRF	28
Libertyville WWTP	28
Mundelein WWTP	29
Lake Co. DPW New Century Town WWTP	29
Lake Co. DPW Des Plaines WWTP	29
Overall POTW Loadings Summary	30
Water Column Chemistry	30
Exceedances of Biological Effect and Reference Thresholds	30
Demand and Nutrient Related Parameters	34
Dissolved Oxygen (D.O.)	34
Temperature ($^{\circ}$ C)	40
рН	44
Ammonia-Nitrogen (N)	47
Total and Dissolved Phosphorus	48
Sestonic Chlorophyll a	50
Total Nitrate-N (NO₃-N)	54
Total Kjeldahl Nitrogen (TKN)	55
Total Suspended Solids (TSS)	56
Nutrient Effects Assessment	57
Ionic Strength Parameters	63
Chlorides	63

Conductivity	65
2021 Water Quality Results	67
Physical Habitat Quality for Aquatic Life – QHEI	69
Des Plaines River 2022 Mainstem Habitat Assessment Results	69
Mill Creek and North Mill Creek 2022 Habitat Assessment Results	72
Des Plaines River 2022 Macroinvertebrate Assemblage Results	73
Mill Creek and North Mill Creek 2022 Macroinvertebrate Assemblage Results	75
Biological Assemblages – Fish	76
Des Plaines River 2022 Fish Assemblage Results	76
Mill Creek and North Mill Creek 2022 Fish Assemblage Results	80
SYNTHESIS	82
References	87
APPENDICES	A thru E

LIST OF FIGURES

Figure 1. Major categorical causal groupings associated with aquatic life impairments in the
upper Des Plaines River mainstem in 2022 based on the number of observations
(upper) and weighted observations (lower), the latter based on the narrative rating of
IPS threshold exceedances (very poor = 5, poor = 3, and fair = 1)
Figure 2. Land uses in the Upper Des Plaines River subbasin based on the USGS National Land
Cover Database (NLCD) 10
Figure 3. Location of biological, chemical, and habitat sampling sites in the DRWW study area in
2022 showing aquatic life use (AQLU) attainment status. Site codes correspond to the
sites listed in Table 515
Figure 4. The hierarchy of administrative and environmental indicators which can be used to
support monitoring and assessment, reporting, and an evaluation of the effectiveness
of pollution controls on a receiving stream. This is atterned after a model developed
by U.S. EPA (1995a,b) and enhanced by Karr and Yoder (2004)
Figure 5. River flow measured daily (upper) and seasonally (lower) at the USGS gauge on the
Des Plaines River (USGS 05528500) near Gurnee, IL during May 1-October 31, 2016-22.
The horizontal lines are the flood stage, 75 th percentile, 50 th percentile, and the seven-
day, ten year (Q _{7,10}) critical low flows
Figure 6. Proportions of third quarter (July 1-September 30) averages of effluent flow (MGD)
and pollutant loadings (lbs./day) discharged by seven (7) major WWTPs to the

	instem Des Plaines River in 2022. Discharges are listed in order from upstream to vnstream in the inset table below the pie charts
Figure 7. Diss dep and min ranູ day D.O solio	solved oxygen (D.O.) concentrations (mg/L) measured continuously by Datasondes bloyed for 3-4 day periods during mid to late July 2022 at 14 short-term locations I 3 long term locations operated by DRWW. Box-and-whisker plots show the timum, maximum, 25th and 75th percentiles, median, and outliers (>2 interquartile ges from the median) values. The IEPA March-July minimum (5.0 mg/L) and the 7- average D.O. criteria (6.0 mg/L) are shown by solid and dashed lines. Maximum the reflective of enriched and over-enriched diel swings are shown by dashed and d lines. The key to major point sources (arrows and numbers) appears in Figure 5.
loca	ximum, mean, and minimum daily D.O. values at DRWW permanent Datasonde ations at sites 13-6 and 13-1 in the Upper DesPlaines River mainstem in 2022 per), 2021 (middle), and 2020 (lower)
loca	ximum, mean, and minimum daily D.O. values at the DRWW permanent Datasonde ation at site 16-4 in the Upper DesPlaines River mainstem in 2022 (upper left), 2021 per right), and 2020 (lower left)
peri loca 25th mec and poir Figure 11 . Ma	emperature (°C) measured continuously by Datasondes deployed for 3-4 day iods during mid to late July 2022 at 14 short-term locations and 3 long term ations operated by DRWW. Box-and-whisker plots show the minimum, maximum, h and 75th percentiles, median, and outliers (>2 interquartile ranges from the dian) values. The IEPA maximum standard of 32.2°C and Ohio maximum (29.8°C) I average (27.8°C) criteria are shown by solid and dashed lines. The key to major nt sources (arrows and numbers) appears in Figure 5
	asonde locations at sites 13-6 and 13-1 in the Upper DesPlaines River mainstem in 2 (upper), 2021 (middle), and 2020 (lower)
Data	aximum, mean, and minimum daily temperature values at the DRWW permanent asonde location at site 16-4 in the Upper DesPlaines River mainstem in 2022 per left), 2021 (upper right), and 2020 (lower left)
Figure 13. pH mid max fron	I values measured continuously by Datasondes deployed for 3-4 day periods during I-late July 2022 at 17 locations. Box-and-whisker plots show the minimum, kimum, 25th and 75th percentiles, median, and outlier (>2 interquartile ranges m the median) values. The shaded area is the range of the Illinois pH standard of -9.0 S.U. The key to major point sources (arrows and numbers) appears in Figure 5. 47
duri thre	oncentrations of median ammonia-N in the upper Des Plaines River mainstem ing June-October 2016-2022. Dashed and solid lines represent IPS derived effect esholds correlated with ranges of biological quality and as listed in Table 7. A key to rces (arrows and numbers) is in Figure 5

Figure 15. Concentrations of median total phosphorus in the upper Des Plaines River mainstem
during June-October 2016-2022. Dashed and solid lines represent IPS derived effect
thresholds correlated with ranges of biological quality and as listed in Table 7. A key to
sources (arrows and numbers) is in Figure 5
Figure 16. Concentrations of median sestonic chlorophyll a in the upper Des Plaines River
mainstem during June-October 2018-2022. Dashed and solid lines represent various
effect thresholds. A key to sources (arrows and numbers) is in Figure 5
Figure 17. Maximum, mean, and minimum daily sestonic chlorophyll a values at DRWW
permanent Datasonde locations at sites 13-6 and 13-1 in the Upper DesPlaines River
mainstem in 2022 (upper), 2021 (middle), and 2020 (lower)
Figure 18. Maximum, mean, and minimum daily sestonic chlorophyll a values at the DRWW
permanent Datasonde location at site 16-4 in the Upper DesPlaines River mainstem in
2022 (upper left), 2021 (upper right), and 2020 (lower left)
Figure 19. Concentrations (mg/L) of median nitrate-N in the upper Des Plaines River mainstem
during June-October 2016-2022. Dashed and solid lines represent IPS derived effect
thresholds correlated with ranges of biological quality and as listed in Table 7. A key to
sources (arrows and numbers) is in Figure 555
Figure 20. Concentrations (mg/L) of median total Kjeldahl nitrogen (TKN) in the upper Des
Plaines River mainstem during June-October 2016-22. Dashed and solid lines
represent IPS derived effect thresholds correlated with ranges of biological quality and
as listed in Table 7. A key to sources (arrows and numbers) is in Figure 5
Figure 21. Concentrations (mg/L) of median total suspended solids (TSS) in the upper Des
Plaines River mainstem during June-October 2016-2022. Dashed and solid lines
represent IPS derived effect thresholds correlated with ranges of biological quality and
as listed in Table 7. A key to sources (arrows and numbers) is in Figure 5
Figure 22. Concentrations (mg/L) of median chloride in the upper Des Plaines River mainstem
during June-October 2016-2022. Dashed and solid lines represent IPS derived effect
thresholds correlated with ranges of biological quality and as listed in Table 7. A key to
sources (arrows and numbers) is in Figure 564
Figure 23. Specific conductance (μ S/cm) measured continuously by Datasondes deployed for
multiday periods during mid-August at 15 locations in the 2020 study area. Box-and-
whisker plots show the minimum, maximum, 25th and 75th percentiles, median, and
outlier (>2 interquartile ranges from the median) values. The IPS thresholds for five
narrative ratings are shown by solid and dashed lines. A key to sources (arrows and
numbers) is in the table above the figure along with flow and loads from each 66
Figure 24. Median specific conductance in the upper Des Plaines River mainstem during June-
October 2016-22. Dashed and solid lines represent IPS derived effect thresholds
correlated with ranges of biological quality and as listed in Table 6. A key to sources
(arrows and numbers) is in Figure 567
Figure 25. Qualitative Habitat Evaluation Index (QHEI) scores in the upper Des Plaines River
mainstem in 2016, 2018, 2020, and 2022. The IPS narrative ranges of QHEI scores from

	excellent to very poor are indicated by solid and dashed lines. A key to sources (arrows
	and numbers) is in Figure 570
Figure 26	. Illinois macroinvertebrate IBI scores in the upper Des Plaines River mainstem in 2016,
	2018, 2020, and 2022. IEPA thresholds for determining full support, non-support-fair,
	and non-support-poor of the General Use for aquatic life are indicated by dashed lines
	and grey shading. A key to sources (arrows and numbers) is in Figure 5
Figure 27	7. Illinois fish IBI (fIBI) scores for the upper Des Plaines River in 2016, 2018, 2020, and
	2022. IEPA thresholds for determining full support, non-support-fair, and non-support
	poor of the General Use for aquatic life are indicated by dashed lines and grey
	shading. A key to sources (arrows and numbers) is in Figure 5
Figure 28	B. Modified Index of Well-Being (MIwb) for the upper Des Plaines River in 2016, 2018,
	2020, and 2022. A key to sources (arrows and numbers) is in Figure 5
Figure 29	. Area of Degradation (ADV; cross hatched) and Area of Attainment (AAV; open
	shading) values in the upper reach and remaining lower reach of the upper Des Plaines
	River in 2016, 2018, 2020, and 2022 (upper and middle panels). The miles of full and
	non-attainment appear in the lower panel

LIST OF TABLES

Table 1 . Aquatic life use attainment status in the 2022 Upper Des Plaines River study area with
associated causes and sources of impairment listed for partial and non-supporting sites
(see footnotes for fIBI and mIBI use support thresholds). The fIBI, MIwb, and mIBI values
are color coded in accordance with meeting five narrative classes (key at bottom of the
table). IPS restorability scores are provided for non- and partially supporting sites and
susceptibility and threat scores are provided for fully supporting sites
Table 2 . E. coli values measured at 12 mainstem and two tributary sites in February and August
2022
Table 3. Level IV subregions of the 2016 Upper Des Plaines River watershed study area and
their key attributes (from Woods et al. 1995)9
Table 4 . Major wastewater treatment facilities that discharge either directly or via tributaries
(river miles are indicated) to the 2022 Upper Des Plaines River mainstem (DPW – Dept.
of Public Works; NSWRD – North Shore Water Reclamation District; WRF – Water
Reclamation Facility; WWTP – Wastewater Treatment Plant). Treatment levels and
nutrient information from U.S. EPA Discharge Monitoring Report (DMR) Pollutant
Loading Tool (https://cfpub.epa.gov/dmr/facility_detail.cfm)
Table 5. Locations of sampling sites in the Year 2 Des Plaines River study area in 2022 showing
the site ID, river or stream, location, river mile, and what sampling was performed at
each (F – fish; MH – multihabitat macroinvertebrate; QHEI – Qualitative Habitat
Evaluation Index; Datasonde; Benthic Chlorophyll a, and water chemistry in accordance
with Tier 1-4 designation 16

- Table 7. Biological effect thresholds derived from Northeast Illinois streams and rivers for selected water column parameters as part of the NE Illinois IPS development and used to assess results from the Year 4 Des Plaines River study area. The most limiting of the fish or macroinvertebrate assemblages for each parameter are indicated along with thresholds for excellent, good, fair, poor, and very poor biological condition along with FIT score (see Appendix D), sample N, and regional reference values for NE Illinois rivers and streams <350 mi.².
- Table 9. Biological effect thresholds derived from Northeast Illinois streams and rivers for selected habitat and land use variables as part of the NE Illinois IPS development and used to assess results from the Year 4 Des Plaines River study area. The most limiting of the fish or macroinvertebrate assemblages for each variable are indicated along with thresholds for excellent, good, fair, poor, and very poor biological condition along with FIT score (see Appendix D), sample N, and regional reference values for NE Illinois rivers and streams <350 mi.².
- **Table 10.** Exceedances of the different parts of the Illinois dissolved oxygen (D.O.) water qualitystandard among the three continuously operated Datasondes (blue shaded) and short-term Datasondes in the upper Des Plaines River during the summer-early fall period of2022. The month, date, and duration in days of each exceedance, the D.O. criterion, andthe narrative standard that was exceeded are listed by site in an upstream todownstream direction.35

- **Table 13.** Results of the analysis of long term Datasonde temperature data during July 1-September 30 at the three permanent DRWW sites 13-6, 13-1, and 16-4. The long term

- **Table 14**. Results of the analysis of long term Datasonde sestonic chlorophyll a data during July1-September 30 at the three permanent DRWW sites 13-6, 13-1, and 16-4. The longterm statistics include the minimum, mean, maximum and % hours less than theexcellent, good, fair, and poor thresholds and exceedances of the very poor and over-enriched thresholds. The short-term intervals from 2020 and 2022 are shown forcomparison. Yellow highlighted values are the highest values between the three sites. 52
- **Table 15**. Results of applying a modified Stream Nutrient Assessment Procedure to the 2022 Year 5 Upper Des Plaines River study area. Descriptions of how each result reflects the degree of nutrient enrichment effects and which results in an assignment of overall enrichment status are shown at the bottom of the matrix along with the source of the thresholds for each primary (blue shaded), secondary (green shaded), and tertiary (tan shaded) parameter. The weighted SNAP score for each parameter and the total SNAP score for deriving the overall enrichment status are shown adjacent to each site parameter value. Biological sampling sites that lacked continuous D.O. data were not assigned an overall enrichment status. The enhanced IEPA Risk of Eutrophication (ROE) result is listed alongside the Overall Enrichment Status.
- **Table 17**. The total SNAP score and overall enrichment status at sites with sufficient data in theupper Des Plaines River mainstem in 2018, 2020, and 202262
- **Table 18.** Mean and median values for 11 selected chemical/physical water quality parametersat 20 sites in the Upper Des Plaines River study area in 2021. NE Illinois IPS thresholdsare listed at the bottom of the table and the results are color coded accordingly. Thedifference between total P and ortho P is reported with differences >0.10 yellowhighlighted.68

Table 20. The twenty (20) most abundant macroinvertebrate taxa collected in the upper Des
Plaines River mainstem in 2022 including sites collected, numbers collected, taxa group,
functional group, and taxa tolerance assignments.
Table 21. Selected macroinvertebrate assemblage attributes for sites sampled in the Upper Des
Plaines Year 4 study area in 2022. Biological index scores selected metrics are shaded by
narrative quality as follows: exceptional – blue; good (fully supporting) - green; fair (non
<pre>support) - yellow; poor (non-support) – orange; very poor – red (non-support);</pre>
signatures of toxic and organic enrichment responses are based on Yoder and DeShon
(2003)
Table 22. The fifteen most abundant species by number (left panel) by weight (right panel)
collected in the upper Des Plaines mainstem in 2020. IL and OH tolerance assignments,
numbers/weight (kg) collected, and percent collected by each (species with blank
tolerance cells are intermediate)77
Table 23. Selected fish assemblage attributes for sites sampled in the Upper Des Plaines Year 5
study area in 2022. Biological index scores selected metrics are shaded by narrative
quality as follows: exceptional – blue; good (fully supporting) – green/light green; fair
(non-support) - yellow; poor (non-support) – orange; very poor – red (non-support);
signatures of toxic and organic enrichment responses are based on Yoder and DeShon
(2003)
Table 24. Key chemical, physical, and biological response indicators of impairment observed at
each site in the Upper Des Plaines River study area in 2022. The causes associated with
biological impairments are drawn from analyses of habitat, nutrient effects, chemical
IPS and other threshold exceedances, sediment chemical IPS exceedances, and
biological response signatures. Causes of impairment are classified as fair, poor, or very
poor in accordance with the exceedance of corresponding thresholds. See footnotes for
table references and biological, physical, and chemical threshold intervals. IPS
restorability score are provided for non- and partially supporting sites and susceptibility
and threat scores are provided for fully supporting sites

ACKNOWLEDGMENTS

Chris O. Yoder, MBI, served as the report editor and project manager. Technical contributions to the report and the analyses were made by Edward T. Rankin, Matthew A. Sarver, Vickie L. Gordon, Martin J. Knapp, and Alex Roller-Knapp, all of MBI. Database management and data analysis were provided by Edward T. Rankin and Vickie L. Gordon. Field crew leaders were Alex Roller-Knapp (macroinvertebrate assemblage), Matthew Sarver (fish assemblage and habitat), and Wesley Hall as directed by Vickie L. Gordon (Datasonde and Benthic Chlorophyll a). Field sampling assistance was provided by Ashley Smith, Madeleine Moates, Grace Brubaker, and Amanda Bias. Logistical and administrative support at MBI was provided by Allison Boehler and Chelsea Dingess. Chemical analysis was provided by Suburban Labs for samples collected by DRWW and by the University of Washington for benthic chlorophyll a. Overall DRWW project management was directed by Ashley Strelcheck and Mike Prusila, Lake Co. Stormwater Management Commission (SMC) and Steve Waters, NSWRD and DRWW Monitoring Committee Chair coordinated a review of the draft and final reports. All members of the DRWW Monitoring Committee are acknowledged for their participation in the report reviews. We also recognize Jacob Jozefowski, Lake Co. SMC for assistance provided with the location of and access to sampling sites.

List of Acronyms

AAV	Area of Attainment Value
ADV	Area of Degradation Value
AQLU	Aquatic Life Use
AWT	Advanced Wastewater Treatment
BOD	Biochemical Oxygen Demand
CBOD 5	5-Day Carbonaceous Biochemical Oxygen Demand
cfs	Cubic feet per second
cfu	Colony forming unit
CWA	Clean Water Act
DAF	Design Average Flow
DC	Direct Current
DMF	Design Maximum Flow
DMR	Discharge Monitoring Report
DNR	Department of Natural Resources
D.O.	Dissolved Oxygen
DPW	Department of Public Works
DRSCWG	DuPage River Salt Creek Working Group
DRWW	Des Plaines Watershed Workgroup
ECOS	Database used by MBI
EPA	Environmental Protection Agency
EPT	Ephemeroptera, Plecoptera, Trichoptera
fIBI	Fish Index of Biological Integrity
GPP	Generator-Powered Pulse
GPS	Global Positioning System
IBI	Index of Biological Integrity
IDNR	Illinois Department of Natural Resources
IEPA	Illinois Environmental Protection Agency
IL	Illinois
INHS	Illinois Natural History Survey
IPS	Integrated Prioritization System
LCDPW	Lake County Department of Public Works
MBI	Midwest Biodiversity Institute
MDL	Minimum Detection Level
MGD	Million Gallons per Day
mIBI	Macroinvertebrate Index of Biological Integrity
MIwb	Modified Index of Wellbeing
NARP	Nutrient Assessment Reduction Plan
NH ₃ -N	Ammonia as Nitrogen
NLRS	Nutrient Loss Reduction Strategy
NO ₃ -N	Nitrate as Nitrogen
NOAA	National Oceanic and Atmospheric Administration
NPDES	National Pollutant Discharge Elimination System

NSWRD OSUMB PEL QAPP QHEI RM ROE SMC SMC SNAP SQRT STV TALU TEL TKN TP TSS	North Shore Water Reclamation District Ohio State University Museum Biodiversity Probable Effect Level Quality Assurance Project Plan Qualitative Habitat Evaluation Index River Mile Risk of Eutrophication Stormwater Management Commission Stream Nutrient Assessment Procedure Screening Quick Reference Table Statistical Threshold Value Tiered Aquatic Life Use Threshold Effect Level Total Kjeldahl Nitrogen Total Phosphorus Total Suspended Solids
	, ,
	•
USGS	United States Geological Survey
UTM	Universal Transverse Mercator
WQS	Water quality standards
WRF	Water Reclamation Facility

FOREWORD

What is a Biological and Water Quality Survey?

A biological and water quality survey, or "bioassessment", is an interdisciplinary monitoring effort coordinated on a waterbody specific or watershed scale. This may involve a relatively simple setting focusing on one or two small streams, one or two principal stressors, and a handful of sampling sites or a much more complex effort including entire watersheds, multiple and overlapping stressors, and tens of sites. The 2022 monitoring rotation included 17 sites on the Upper Des Plaines River mainstem, two sites on North Mill Creek, and a single site on Mill Creek, all within Lake County except for a single site on the lower mainstem located in Cook County. All of these sites were previously sampled in 2016, 2018, and 2020 for biological assemblages and habitat, and 73 sites annually throughout the Upper Des Plaines watershed since 2015 for water chemistry. The principal focus of the 2022 bioassessment is on the status of the Illinois General Use for aquatic life.

Scope of the 2022 Biological and Water Quality Assessment

The Midwest Biodiversity Institute (MBI) was contracted in 2016 by the Des Plaines Watershed Workgroup (DRWW) to develop a biological and water quality monitoring and assessment plan for the Upper Des Plaines River watershed within Lake County, IL. The plan was incorporated into a Quality Assurance Project Plan (QAPP; DRWW 2016) that was submitted to and approved by Illinois EPA. The spatial sampling design consisted of an intensive pollution survey and geometric allocation of sites in the major tributary subwatersheds. This design was employed to fulfill multiple purposes and goals in addition to the determination of the existing status of the biological assemblages and their relationship to chemical, physical, and biological stressors. Targeted sites were positioned upstream and downstream from major discharges, other sources of potential pollution releases and contamination, and major tributaries to provide a "pollution profile" of the major mainstem streams and rivers. Sampling locations in the smaller tributaries were allocated by a geometric progression of drainage area to a "resolution" of 0.5-1.0 square miles. The major program objectives include:

- Determine the aquatic life status of each sampling location in quantitative terms, i.e., not only if a waterbody is impaired, but the spatial extent and severity of the impairment and the respective departures from established criteria;
- 2. Determine the proximate stressors that correspond to observed impairments to target management actions to those stressors; and,
- 3. Screen for any potential issues with use attainability.

To meet these objectives data was collected with methods that provide high-quality results and in conformance with the practices of Illinois EPA (IEPA 2010a,b; 2011a-g; 2014a,b) and Illinois DNR (2010a,b) and under a project QAPP approved by IEPA (DRWW 2016).

Previous biological assessments of the Upper Des Plaines River basin streams and rivers include major surveys by Illinois EPA (IEPA 1988,), Illinois DNR (IDNR; Pescitelli and Widloe 2018; Pescitelli 2016; Pescitelli and Rung 2010a,b; Day 1991; Heidinger 1989; Bertrand 1984; Langbein and Wright 1976; Muench 1968), Illinois Natural History Survey (Bilger et al. 2016; Sherwood et al. 2016), U.S. Geological Survey (Steffeck and Streigl 1989), Shedd Aquarium (Bland and Willink 2015), and others (Slawski et al. 2008). Some of these surveys included the entirety of the Des Plaines River and others focused on the Upper Des Plaines defined as the mainstem and tributaries upstream from the confluence with Salt Creek. Smaller surveys of specific tributaries in Lake Co. have also been conducted, but none were of sufficient scope or coverage to meaningfully compare to the initial watershed assessment in 2016 (MBI 2017), the Year 1 watershed bioassessment of the Indian, Buffalo, or Aptakisic Creek subwatersheds (MBI 2018), the Year 3 watershed assessment of the Mill Creek, Bull Creek, and Upper Des Plaines River Tributary Subwatersheds (MBI 2021), and the Des Plaines River mainstem (MBI 2017, 2022).

The recent basin-wide fish surveys by IDNR included only a single site located on Indian Creek. Other fish surveys included two sites on Seavey Drainage Ditch (pre- and post-dam removal 2008, 2010), a qualitative fish survey in Seavey Ditch and Indian Creek in June 2016 (Bland et al. 2016) and a more recent and comprehensive survey of fish, macroinvertebrates, and mussels in streams potentially impacted by the State Route 53 extension northward through Lake Co. in 2014 and 2015 (Sherwood et al. 2016; Bilger et al. 2016; Douglas et al. 2016). This included 3 sites in the Buffalo Creek subwatershed and 7 sites in the Indian Creek subwatershed sampled for fish and 4 of these 10 sites sampled for macroinvertebrates.

The 2022 Year 4 assessment followed the Year 3 2020 mainstem assessment and continued to utilize the analyses and outputs of the Northeastern Illinois Integrated Prioritization System (NE IL IPS; MBI 2023a). Biological effect thresholds for five biological condition categories (i.e., excellent, good, fair, poor, and very poor) were developed for 87 chemical water quality, sediment chemistry, and habitat attributes that are more regionally relevant than what has been used previously. For nutrients, this includes not only more refined thresholds for nutrient parameters, but a combined assessment that assembles indicators and parameters responsive to the direct and indirect effects of nutrients. The IPS yields a Restorability factor for impaired sites, reaches, and watersheds and a Threat/Susceptibility factor for attaining sites. In combination with improved stressor thresholds across five condition categories, the IPS has provided more certainty in the delineation and severity of causes and sources of impairment and threats.

EXECUTIVE SUMMARY

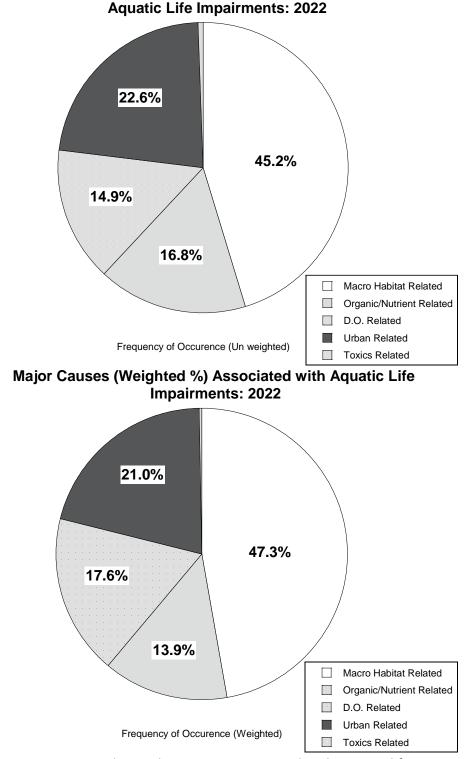
Summary of Findings

Aquatic Life Condition Assessment

The primary indicators of the status of the Illinois General Use for aquatic life are the Illinois fish and macroinvertebrate Indices of Biotic Integrity and generally following the guidance in the 2022 Integrated Report (IEPA 2022) with certain exceptions. The status of aquatic life is reported here in an attainment table (Table 1) and expressed as full, partial, or non-support and based on the most limiting of either the fish or macroinvertebrate results. Non-support is further subdivided into non-support fair and non-support poor; the partial support category was added to clarify instances where only one of the two assemblages attained the General Use support thresholds for fish or macroinvertebrates. The 2022 results showed two sites in full attainment of the General Use for aquatic life, up from one site in 2020, but down from five (5) sites in 2018 (MBI 2020b). The fish assemblage was the limiting factor as the macroinvertebrate IBI met its criteria at all sites in the effluent affected portion of the upper mainstem. The 2022 fIBI scores declined at the formerly attaining sites by anywhere from 0.5 to 3.0 fIBI units with one site missing by only 0.5 fIBI units.

The discharge of large volumes of treated municipal wastewater continues to benefit the Des Plaines River and aides in offsetting detrimental impacts that are exported downstream from the modified upper reach of the mainstem. The biological results downstream from the entry of treated wastewater via Mill Creek at site 13-3 were better both in terms of AQLU status and the fIBI and mIBI scores than at the four upstream most sites that were in non-fair in 2022 and have been and non-poor non-attainment category in prior years. Even with the lower fIBI scores in 2020, the longitudinal pattern was the same – consistent incremental improvement downstream from the Wetland Research riffle and seemingly unaffected by the entry of large volumes of treated wastewater. This and the accumulation of more poor and very poor exceedances of IPS and other thresholds in the upper modified reach affirms that impacts by nonpoint source pollutants are being exacerbated by the habitat and hydrological modifications in the upper watershed as the major limiting sources to aquatic life. After observing this phenomenon over four survey years since 2016, and examining the differences in the annual flow regime over that same period, suggests that periodic high flow events that approach or exceed flood stage export the upstream pollution out of the study area. In contrast, spates of lesser magnitude elevated flows act to deposit this pollution along the lower reaches of the study area. Besides the new revelations of the analysis of the permanent DRWW Datasonde data, the observations of nonpoint source derived muck substrates by the fish crew at site 16-2 during the first pass following one of these flow events. Different results were observed at 16-2 during the second pass later in the summer-fall index period that was reflected by a 10 point difference in the fIBI scores and the difference between non and full attainment of the General Use for aquatic life in 2022. The discovery of Round Goby at the four (4) downstream most sites in 2020 and their persistence in 2022 still adds an unknown factor for the aquatic assemblages in the future. There was no apparent movement upstream in 2022, but this bears watching in the future as it represent the furthest upstream ingress in the Des Plaines basin (Sarver 2022).

Table 1. Aquatic life use attainment status in the 2022 Upper Des Plaines River study area with associated causes and sources of impairment listed for partial and non-supporting sites (see footnotes for fIBI and mIBI use support thresholds). The fIBI, MIwb, and mIBI values are color coded in accordance with meeting five narrative classes (key at bottom of the table). IPS restorability scores are provided for non- and partially supporting sites and susceptibility and threat scores are provided for fully supporting sites. A glossary of causes appears at the bottom.


								2022 Causes by IPS Stressor Threshold Narrative Category							Restora-	Suscept-	
		Drainage													bility	ibility	Threat
Site ID	River Mile	Area (sq. mi.)	fiBi	mIBI	Miwb	QHEI	AQLU Status	Very Poor ¹	Poor ¹		Fair ¹		Threats	2022 Sources	100)	Score (U- 100)	- Score (0- 100)
0.110 12		(541)				1	Utatus			s Plaines Ri							
13-6	109.30	123.7	30.5	37.1	8.4	49.0	Non - Fair	Substr; Low D.O.; D.O.Swing; Max.	Imperv-30C; QHEI; Organic enrich.; G	Good	han; Chloride; TP			Alt. Flow;Habitat	57.7		
15 0	105.50	125.7	50.5	57.1	0.4	45.0			QHEI attr.; Poor QHEI attr.					Mod.,NPS	57.7		
13-5	106.60	137.3	26.5	37.2	7.4	35.8	Non - Fair	Substr; Chan; D.O. Swing; QHEI Ratio; TSS; Good QHEI attr.			nperv-500m;Imperv-30; Chloride; Organic enrich.			Alt. Flow;Habitat Mod.,NPS	51.5		
13-4	102.90	145.6	28.0	32.7	8.6	46.0	Non - Fair	Substr; Organic enrich.	QHEI; Chan; Low D.O.; D.O. Swing; Q Ratio; Good QHEI attr.; Poor QHEI at	C	hloride; Organic enrich.			Alt. Flow;Habitat Mod.,NPS	54.7		
13-18	99.72	212.9	23.5	31.5	8.0	38.0	Non - Fair	Substr; Chan;	QHEI; D.O. Swing; Organic enrich.; Q ratio; Good QHEI attr.; Poor QHEI at	T	KN; Chloride; Low D.O.; Max. D.O.			Alt. Flow;Habitat Mod.,NPS	51.8		
13-19	99.30	213.2	37.0	33.1	9.7	74.8	Non - Fair		Low D.O.; Organic enrich.; Poor QHE		UHEI; Substr; Chan; Chloride; Good QHEI attr.			Habitat Mod.,NPS	70.9		
13-3	98.70	220.3	32.5	42.1	8.8	72.8	Partial	Low D.O.; D.O. Swing	Chloride; Poor QHEI attr.		nperv-500m; TKN; QHEI; Chan; Conduct; Organic enrich.: Good QHEI attr.			Upstream Flow & Urban NPS	66.4		
13-2	96.82	225.4	43.5	46.2	8.6	78.3	Full					Imperv-500m D.O.;D.O. Swi	n;Nitrate;Chloride;Low			100.0	90.0
13-1	94.20	232.0	43.0	54.9	8.6	66.0	Full					Imperv- 500m;TP;TKN	QHEI;Substr;Chan;			91.1	80.0
13-16	90.60	253.8	38.0	60.1	7.5	70.5	Partial	Nitrate;	Chloride; Poor QHEI attr.	Ir	nperv-500m;TP; QHEI; Substr; Conduct;; Good QHEI attr.			Urban NPS,WWTP	66.0		
16-6	87.10	261.4	38.0	69.4	8.5	69.5	Partial		Chloride; Poor QHEI attr.		HEI; Chan; Low D.O.; D.O. Swing; Nitrate; TP; Good QHEI ttr.;	Low D.O.; D.O. Swing; Nitrate; TP; Good QHEI		Urban NPS,WWTP	69.5		
16-7	84.60	266.5	38.0	60.1	8.0	75.3	Partial		Chloride; Nitrate; Poor QHEI attr.		nperv-500m;Imperv-30;Imperv-30C;TP; Substr; Conduct;; iood QHEI attr.;			Urban NPS,WWTP	68.3		
16-5	83.60	268.1	33.0	48.2	7.9	60.3	Partial	Poor QHEI attr.	QHEI attr. Chloride; Good QHEI attr.;		rv-500m;Imperv-30;TP; Nitrate; QHEI; Substr; Chan; uct; Low D.O.; D.O. Swing; Toxics; Max D.O.			Urban NPS,WWTP	59.2		
16-8	82.90	268.9	33.0	56.0	7.8	61.0	Partial	Chloride; Poor QHEI attr.	Nitrate; Good QHEI attr.;	Ir	nperv-500m; Nitrate; QHEI; Substr; Chan; Conduct; TP			Urban NPS,WWTP	60.2		
16-4	80.00	273.2	32.5	65.8	7.2	67.0	Partial	Max. D.O.; Poor QHEI attr.	Chloride; Low D.O.; D.O. Swing; Nitra		Imperv-500m;Imperv-30;Imperv-30C; Nitrate; QHEI; Substr; Chan; Conduct; TSS; Good QHEI attr.;		Urban NPS, WWTP, Habitat	66.0			
16-3	76.70	314.7	34.5	48.4	7.7	61.8	Partial	TSS; Poor QHEI attr.	Chloride; Nitrate; Good QHEI attr.;		Nitrate; QHEI; Substr; Chan; Conduct; Low D.O.; D.O. Swing; TP		Urban NPS, WWTP, Habitat	73.4			
16-2	75.40	324.0	40.5	61.3	8.2	59.3	Partial	Poor QHEI attr. Imperv-30;Imperv-30C; Chan; Chloride; Good QHEI attr.:		-	Imperv-500m; Nitrate; QHEI; Substr; Conduct; Low D.O.; D.O. Swing; Max. D.O.			Urban NPS,WWTP,Habitat	59.3		
16-1	71.70	358.7	36.0	53.8	8.1	71.0	Partial	Chloride; Max. D.O.	Low D.O.; D.O. Swing; Good QHEI att QHEI attr.	tr.; Poor	nperv-500m; Chan; Conduct; TSS;			Urban NPS, WWTP, Habitat	55.8		
										Mill Creek				1			
11-2	1.71	62.3	30.0	44.7	8.9	83.8	Partial		Chloride;	т	KN; Chloride; TSS			NPS	84.3		
						_			Nor	rth Mill Cro	eek						
10-7	11.30	19.2	22.0	40.5	NA	28.50	Non - Fair	Substr; TSS; QHEI ratio; Chloride; Good QHEI attr.; Poor QHEI attr.	QHEI; Chan;	т	KN; Organic enrich.			Urban NPS	73.9		
10-1	1.10	31.9	18.0	63.5	6.9	50.00	Non - Poor		QHEI; Substr; DO Swing; Good QHEI attr.; Poor QHEI attr. TP; TKN; Chan; Chloride; Nitrate; Max D.O.				Habitat Modificaiton, NPS	80.6			
		Excellent	<u>></u> 50	>73	<u>></u> 9.6	>84.5	FULL	Acronym Imperv-30C Imprevious surface 3	Description	Acronym High Mod. At		Acronym Conduct	Specific conductivity	scription	Very High	Very Low	Very Low
		Good	<u>></u> 41	<u>></u> 41.8	<u>></u> 8.5	>75.9	FULL	Imperv-30C Imprevious surface 3 Imperv-500 Imprevious surface 5		Good QHEI A		Toxicity	Exceedance of Toxic Biologica		High	Low	Low
Narrtive Ca	ategories	Fair	<u>></u> 30	<u><</u> 41.7	<u>>6.4</u>	<75.9	PARTIAL	Imperv-30 Imprevious surface 3 QHEI Qualitative Habitat E	0 m buffer valuation Index (OHEI)	Poor QHEI At Chloride		Org. Enrich.	Exceedance of Organic Enrichr	nent Biological Signature	Moderate	Moderate	Moderate
		Poor	>15	<29	>5.0	<50.1	NON-Fair	QHEI Qualitative Habitat E QHEI Ratio Ratio of Modified:Go	(2)	Low D.O.	Chloride concentration in mg/L Minium Dissolved Oxygen in mg/L	TSS TKN	Total suspended solids Total Kjeldahl nitrogen		Low	High	High
		Very Poor	<15	<15	<5.0	<25.0	NON-Poor	Chan Channel condition fro		Max. D.O.	Maximum Dissolved Oxygen in mg/L	TP	Total phosphorus				
		Very Poor	<12	- <15	<5.0	<25.0	NON-POOP	Substr Substrate condition f	rom QHEI	D.O. Swing	g Width of Diel D.O. Variation in 24 Hrs.	Nitrate	Nitrate as N		Very Low	Very High	Very High

Causes and Sources of Non-attainment

Causes and sources were determined for each impaired site and included categorical or parameter level associations and their sources (if known). With the recent availability of more comprehensive and regionally relevant analyses of stressors in the Northeast Illinois via the Integrated Prioritization System (NE IL IPS; MBI 2023a) assigning causes is now weighted by exceedances of very poor, poor, and fair IPS threshold values. This approach still involves using a lines-of-evidence approach where chemical and physical threshold exceedances generated by the NE IL IPS within a causal category (or for a parameter) is proximally related to a biological impairment. This goes well beyond the association of a coincidental exceedance of a chemical criterion or other threshold with a biological impairment. Knowing about relationships that are supported by prior empirical observations in other studies and our own experiences continues to boost the confidence in causal assignments. This process varies from that used by IEPA in that additional and regionally developed effect thresholds were used to derive causes beyond those used by IEPA (2022).

Twenty (20) causes across five (5) major categories and six (6) major sources were identified for the Upper Des Plaines River mainstem in 2022 (Figure 1). Of the 20 causes, six (6) were habitat related, eight (8) were chemical, three (3) D.O. related, and three (3) land use related. The proportion of causes was assessed based on the number of simple observations and weighted observations at an impaired site (Figure 1), the latter being based on the severity of the expression of the specific stressor within a causal category. A higher weighting was assigned based on the narrative rating of an exceedance multiplied by 5 for very poor, by 3 for poor, and by 1 for fair in 2022. This compares to nineteen (19) causes across four (4) major categories and six (6) major sources that were identified for the upper Des Plaines River mainstem in 2020 . Thirteen (13) causes across seven (7) major categories and five (5) source categories were identified for the upper Des Plaines River mainstem in 2020 . Thirteen (13) causes across seven (7) major categories and five (5) source categories were identified for the upper Des Plaines River mainstem in 2020 . Thirteen (13) causes across seven (7) major categories and five (5) sites and North Mill Creek site 10-7 in 2022. One or two exceedances occurred sporadically at the remaining sites in 2022. In 2018 seven (7) sites including and downstream from site 13-3 at U.S. Rt. 41 had one or more causes with poor threshold exceedances.

The Macro Habitat Related category at 47.3% was the most pervasive cause followed by Urban Related causes at 21.0%, D.O. related issues at 17.6%, and Organic/Nutrient Enrichment at 13.9% based on the weighted frequency for each cause. Each category had poor and very poor threshold exceedances that were primarily observed in the modified upper reach upstream from the Wetland Research Riffle and the confluence with Mill Creek. Fair exceedances included more parameters and stressors and were the most frequently observed in the middle and lower reaches of the mainstem with fewer poor and very poor exceedances. Most of the elevated levels of nitrate-N and total P were in the fair range with only four nitrate-N values in the poor or very poor range. The fair exceedances were observed primarily in the wastewater effluent influenced reaches of the middle and lower mainstem. Urban related causes exceeded mostly fair thresholds and occurred mostly in the middle and lower mainstem, but poor exceedances of the Impervious Cover-30 meter buffer occurred at the two upstream most sites.

Figure 1. Major categorical causal groupings associated with aquatic life impairments in the upper Des Plaines River mainstem in 2022 based on the number of observations (upper) and weighted observations (lower), the latter based on the narrative rating of IPS threshold exceedances (very poor = 5, poor = 3, and fair = 1).

Poor and a few very poor exceedances of chloride occurred throughout the study area. Urban related causes had three poor results, two in the upper mainstem, but most exceeding fair thresholds in the middle and lower mainstem. These results are similar to the 2020 and 2018 although the 2020 and 2022 causal categories were further refined via the availability of IPS thresholds beginning in 2020. The principal difference between 2022 and 2020 was the order of the causal categories after Macrohabitat Related and the increased proportion of that category in terms of the weighted frequency in 2022.

IPS Restorability, Susceptibility, and Threat Results

The Northeast Illinois Integrated Prioritization System (IPS; MBI 2023a) was used to calculate the Restorability scores for non-attaining and partially attaining sites and Susceptibility and Threat scores for the two fully attaining sites. Fifteen (15) non-supporting and partially supporting mainstem sites and all three Mill Creek/North Mill Creek sites had high and very high Restorability scores. In terms of the Restorability scores, 11 of the 15 non and partially attaining mainstem sites had Restorability scores ranked as high or very high. The high and very high rankings mean that the likelihood of reaching full attainment with conventional restoration means is plausible and not precluded by insurmountable impacts and modifications. The remaining seven (7) impaired mainstem sites ranked as moderate although three (3) of the scores were within 0.7-2.3 of high and all were greater than 51.5 (60 is high). Five (5) of these sites had very poor causes assigned and four (4) were impacted by hydromodifications. The highest ranked mainstem sites were located downstream from the Wetland Research Riffle in the reach receiving the majority of the municipal wastewater effluent. Three (3) sites in the lower mainstem (16-5, 16-2, and 16-1) missed a high Restorability ranking by 0.8, 0.6, and 4.2 points respectively. The other four (4) moderate ranked sites occurred in the upper mainstem that has been subject to more severe hydromodifications including legacy channelization with little or no recovery and flow alterations. These sites also exhibited multiple poor and very poor causes of impairment including low D.O., excessive diel D.O. swings, substrate siltation, and a predominance of poor QHEI scores with high numbers of modified QHEI attributes. Addressing these impairments would require structurally oriented restoration actions to address the modified habitat (i.e., reduce or eliminate the numerous modified habitat attributes) and altered flow conditions which would be a significant undertaking for a river channel of that size.

For the two fully supporting sites, Susceptibility and Threat scores were applied. In terms of the narrative assignments being used at present (see Table 1, bottom), both the Susceptibility and Threat rankings were very low. The Threat rankings of 80 and 90 and Susceptibility scores of 100 and 91.1 at sites 13-2 and 13-1 are very low which means that impairment by the listed threats are not imminent. The threats included impervious land cover in the 500 meter riparian buffer, chloride, conductivity, total P, nitrate-N, QHEI, substrate siltation, low D.O., and the diel D.O. swing. The full attainment at site 16-2 in 2020 and two sites in 2022 indicates that the impacts from upstream sources can be mitigated via the introduction of properly treated wastewater despite having multiple threats. The reach with the five (5) previously attaining sites in 2018 that were in partial attainment in 2022, only one of which coincided in 2022, had only two very poor elevated values, nitrate-N at 13-16 and chloride at 16-8 in 2022. Poor exceedances of chloride and nitrate-N occurred at the 10 partially attaining sites with low D.O.

and a wide diel D.O. swing at two of these sites.

Synthesis of Results

The introduction of large volumes of treated municipal wastewater to the mainstem downstream from the upper modified reach continues to benefit the Upper Des Plaines River and aides biological condition by offsetting detrimental impacts of pollution that is exported downstream from the modified upper reach of the mainstem. The biological results downstream from the entry of treated wastewater at site 13-3 were better both in terms of AQLU status and the fIBI and mIBI scores than at the four upstream most sites that were in nonfair non-attainment in 2022 that have been non-poor in prior years. Even with the lower fIBI scores in 2020, the longitudinal pattern was the same – consistent incremental improvement downstream from the Wetland Research riffle and seemingly independent of the entry of large volumes of treated wastewater. This and the accumulation of more poor and very poor exceedances of IPS and other thresholds in the upper modified reach indicates that nonpoint source pollutants are being exacerbated by the poor habitat and hydrological modifications in the upper watershed as the major limiting sources to aquatic life. Observing this phenomenon over four survey years spanning 2016-22 and examining the differences in the annual flow regime over that same period, the results suggest that periodic elevated flow events that approach or exceed flood stage export most of the upstream pollution out of the study area at least temporarily. However, spates of less elevated high flows act to move and deposit this pollution in the lower reaches of the study area. Besides the revelations of the analysis of the permanent DRWW Datasondes, the observations of nonpoint source derived muck substrates by the fish crew at site 16-2 during the first sampling pass following one of these events, but finding different conditions during the second pass later in the summer-fall index period was reflected by a 10 spread in the fIBI score which was the difference between non and full attainment of the General Use for aquatic life in 2022.

Recreational Use Assessment

Levels of fecal bacteria in the form of *Escherichia coli* (*E. coli*) cfu²/100 mL have been used to assess the status of recreation in and on the water in the Upper Des Plaines mainstem since 2015. The IEPA General Use criteria are expressed as counts of fecal coliform bacteria, but have not been measured in the DRWW study area. Hence, the U.S. EPA national criteria for *E. coli* were used instead. The U.S. EPA *E. coli* criteria are expressed as a 90- day geometric mean and a statistical threshold value (STV) which is the 90th percentile of the data distribution that is not exceeded by more than 10 percent of the samples. Given the small sample size limitations of the 2015-21 surveys, mean values of 3-6 samples were used as an approximation of the 90-day geometric mean and maximum values as an approximation of the STV. The U.S. EPA recommended 90-day geometric mean criteria value is 126 cfu/100 ml and the STV criteria value is 410 cfu/100 ml (U.S. EPA 2012).

E. coli was sampled only two times in the Des Plaines River mainstem at 12 locations in 2022 compared to 17 locations in 2020, 16 locations in 2018 and 2019, and 12 locations in 2015, 2016, and 2017 each (MBI 2022). Furthermore, the 2022 samples were collected in February

Table 2. E. coli values measured at 12 mainstem and two
tributary sites in February and August 2022.

	River							
Site ID	Mile	Samples	February	August				
Upper Des Plaines River								
13-6	109.3	1		12				
13-5	106.6	1		73				
13-4	102.9	1		105				
13-3	98.7	2	249	727				
13-2	96.8	2	727	228				
13-1	94.2	2	2419	236				
16-6	87.1	2	816	153				
16-5	83.6	2	866	62				
16-4	80.0	2	980	155				
16-3	76.7	2	816	115				
16-2	75.4	2	1120	60				
16-1	71.7	2	921	613				
		Mill Cre	eek					
11-2	1.7	2	687	96				
North Mill Creek								
10-1	1.1	1		387				
	<126 cfu/mL primary contact criterion							
	2126 cfu/mL primary contact criterion							
>410 statisitical maximum value.								

and August (Table 2), the former being outside of the recreation

period of May 1-October 31 within which the recreation use criteria normally apply and outside of the seasonal disinfection of treated wastewater effluent. Under the reduced sampling in 2022 an assessment of recreation use attainment could not be made. E. coli values were decidedly higher in February compared to August, the latter having two values that exceeded the STV and four that exceeded to geometric mean. All of the exceedances occurred at site 13-3 (RM 98.7) and downstream with the three upstream values well below the geometric mean. This clearly marks the entry of treated municipal wastewater that is not being disinfected outside of the May 1-October 31 recreation season.

The frequency of exceedances of the U.S. EPA recommended geometric mean and STV criteria have generally declined since 2015. However, exceedances of the geometric mean or maximum STV was observed at all sites in 2019. A majority of the sites had exceedances of both. The most recent valid assessment conducted in 2020 at 17 sites showed four (4) sites with maximum values that exceeded the STV and four (4) had exceedances of the geometric mean, including two (2) having exceedances of both criteria (Table 2). The dual exceedances at 13-18 (RM 99.72) were attributed to nonpoint source runoff as were exceedances at 13-1 (RM 94.2) despite being located 1.2 miles downstream of the Gurnee WRF outfall which showed consistently low cfu/100 mL counts. Years with lower flows had exceedances of *E. coli* from point sources, while during years with higher flows nonpoint sources exacerbated increased counts (MBI 2022). The low frequency of samples in a given year continues to limit the diagnostic value of the data hence a more intensive study would need to be undertaken to firm up the recreational use status and to better pinpoint sources of *E. coli* that actually interfere with recreational uses of the river.

Biological and Water Quality Assessment of the Upper Des Plaines River 2022

Study Area Description

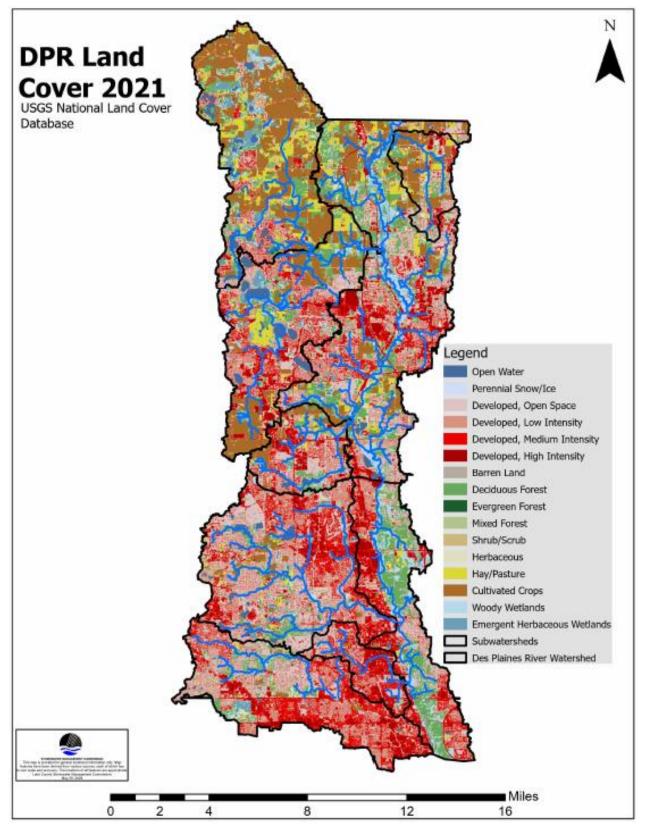
Lake County is comprised of 53 individual communities and 18 townships with a total area of 1368 square miles of which a significant fraction are waterbodies comprised of lakes, wetlands, rivers, and streams in the Upper Des Plaines River basin. According to the 2018 American Community Survey estimate, there are 700,832 residents in Lake County and 263,360 housing units, making it the third most populated county in Illinois (USCB, 2020). The 2022 study area covers roughly 135 square miles of the upper Des Plaines River watershed including Mill Creek, North Mill Creek, and the mainstem of the Des Plaines River. North Mill Creek originates in Wisconsin near Bristol and flows 17 miles to its confluence with Mill Creek near Lindenhurst, IL. Mill Creek originates near the Village of Grayslake, IL, and flows 18.5 miles to its confluence with the Des Plaines River near Wadsworth, IL. The Des Plaines River originates in Wisconsin near Racine in Kenosha Co. north of where it enters Illinois in Lake County. The Des Plaines River flows due south for 110 miles joining the Kankakee River to form the Illinois River. The total watershed area is approximately 2110 square miles of which 1231 are in Illinois (Healy 1979). The watershed in Lake Co. is "trellised" meaning it is narrow relative to the length of the mainstem thus the tributaries are of comparatively shorter lengths with comparatively small drainage areas.

General Landscape Setting

The study area occurs in the Kettle Moraine subregion of the Southeastern Wisconsin Till Plains Level III ecoregion and the Valparaiso-Wheaton Morainal Complex subregion of the Central Corn Belt Plains Level III ecoregion (Table 3; Woods et al. 2006). The Kettle Moraine subregion occupies the majority of the study area to the west and northwest of the mainstem. It is characterized by poorly drained, hilly to hummocky morainal areas that include conspicuous glacial landforms, numerous lakes, and wetlands including bogs, fens, and marshes. Drainage networks are less integrated and more poorly developed than on the older till and outwash plains of the adjacent Rock River Drift Plain subregion. Lakes are typically larger and more concentrated than to the south in the Valparaiso Morainal Complex subregion and much more common than in other neighboring subecoregions. Soils are largely derived from thick late-Wisconsinan glacial drift and loess deposits, where they occur, are thin. Alfisols are common, but Mollisols and Histosols also occur. Overall, organic soils are more extensive than elsewhere in Illinois, and Mollisols are less common than in subregions to the west. In the early 1800s moraines were covered by savanna, prairie, and forest (oak-hickory) with depressions containing wetlands. Landscape alterations in the 1900s reduced the tracts of forest and nonforested wetlands replacing them with urban and suburban development. However, wooded areas, lakes, and wetlands are still common, especially in the extensive forest preserves.

The Valparaiso-Wheaton Morainal Complex subregion is a hilly, hummocky to rolling area containing moraines, kames, eskers, and outwash plains with numerous small lakes and marshes. Soils are largely derived from thick, late-Wisconsinan glacial drift and loess deposits,

Rey	key attributes (from woods et al. 1993).										
Level IV Subregion	Physiography	Geology	Soils	Potential Natural Vegetation	Land Use/Land Cover						
Kettle Moraine (53b)	Glaciated, hummocky to hilly area with steeply sloping moraines, outwash plains, closed depressions, mounds, level areas, and many wetlands and natural lakes.	Wisconsinan- age glacial till, outwash gravels, and thin loess (<20"). Silurian & Ordovician dolomite, lime- stone, and shale bedrock.	Mostly Alfisols (Hapludalfs, Epiaqualfs); also, Mollisols (Argiudolls, Endoaquolls), Histosols.	Oak-hickory forest, oak savanna, & bluestem prairie occur on moraines. Wetlands (bogs, fens, seeps, sedge meadows, marshes) were common.	Forest, pastureland, & wetland. Home sites common on moraines and lakes.						
Chiwaukee Prairie (54e)	Prairie developed sand till, thin loess,		Alfisols (Hapludalfs, Endoaqualfs)	Bluestem prairie and oak savanna. Tall- grass prairies, scrub oak forests, sand prairies, sand savannas, fens, and marshes.	Cropland, urban and industrial development. Some forested areas.						


Table 3. Level IV subregions of the 2016 Upper Des Plaines River watershed study area and their	
key attributes (from Woods et al. 1995).	

where they occur are thin. Alfisols are common and Mollisols also occur, but are less common than in neighboring subregions. In the early 1800s, prairie and forest (oak-hickory) dominated the moraines with swamp white oak forests and marshes occurring in poorly drained areas. Prairie covered slightly more than half of this subregion. Subsequent fire suppression has reduced the number of prairie openings, thereby increasing forest density. Today, pastureland is common, and urban and suburban development is increasing. However, wooded areas, lakes, and wetlands are still common, especially in the extensive County owned forest preserves. Land uses are varied and include residential (26.3%), public/private open space (19.4%), agricultural (12.2%), transportation (10.6%), forest/grassland (9.3%), water (7.0%), wetlands (5.4%), and the remainder comprised of six additional land use types (Lake Co. Local Planning Committee 2012; Figure 2).

Major Point Sources

Significant point sources of pollution were inventoried to understand the extent of the pollution impact and for the intensive pollution survey design. There are a total of 18 wastewater treatment plants (WWTP) in the 2022 study area. Eight (8) are major discharges which comprise 80 million gallons per day (MGD; average annual flows) of treated wastewater. The 2022 (Year 5) study area includes seven (7) of the eight (8) major discharges in the Upper

May 15, 2024

Figure 2. Land uses in the Upper Des Plaines River subbasin based on the USGS National Land Cover Database (NLCD).

Table 4. Major wastewater treatment facilities that discharge either directly or via tributaries (river miles are indicated) to the 2022 Upper Des Plaines River mainstem (DPW – Dept. of Public Works; NSWRD – North Shore Water Reclamation District; WRF – Water Reclamation Facility; WWTP – Wastewater Treatment Plant). Treatment levels and nutrient information from U.S. EPA Discharge Monitoring Report (DMR) Pollutant Loading Tool (https://cfpub.epa.gov/dmr/facility_detail.cfm).

					Design Avg.		
					Flow	Treatment	Nutrient
Facility	Receiving Water Body	River Mile	Latitude	Longitude	(MGD) ¹	Type ²	Removal ³
Lake Co. DPW Mill Creek WWTP	Mill Cr./Des Plaines River	1.0/102.0	42°25′00″N	87°55′40″W	2.1	AWT	Р
NSWRD Waukegan WRF	Des Plaines R.	98.1	42°22′15″N	87°54'53"W	22.0	AWT	Р
NSWRD Gurnee WRF	Des Plaines R.	95.5	42°21′25″N	87°55'36"W	23.6	AWT	Р
Libertyville WWTP	Des Plaines R.	84.8	42°15′15″N	88°56′10″W	4.0	AWT	М
Mundelein WWTP	Des Plaines R.	84.6	42°15′11″N	87°50′34″W	5.0	Secondary	М
Lake Co. DPW New Town Century WWTP	Des Plaines R.	82.3	42°13′30″N	87°56′15″W	6.0	AWT	Р
Lake Co. DPW Des Plaines WWTP	Aptakisic Cr./Des Plaines	0.8/76.4	42°09′47″N	87°55′40″W	16.0	AWT	Р

¹ Design average flow from NPDES fact sheet; ² AWT – Advanced Wastewater Treatment – generally 10-20 mg/L CBOD5, 1.5-3.0 NH₃-N; 12-24 mg/L TSS; Secondary – generally 30 mg/L CBOD₅/TSS, and no NH₃-N removal; ³ M – nutrient (N and P) monitoring only; P – 1.0 mg/L limitation.

DesPlaines River watershed (Table 4). All except one of these facilities have advanced treatment for oxygen demanding wastes (BOD), ammonia-N (NH₃-N), and suspended solids (TSS). The Mundelein WWTP is the only secondary treatment facility remaining in the Year 5 study area. Six (6) facilities have phosphorus removal technology and all seven (7) facilities monitor for N and P (MBI 2017).

NPDES Permit Special Conditions

All of the major permitted WWTPs are subject to Special Conditions related to the discharge of nutrients, but not all have final language. The first special condition states:

"The Permittee shall, within twelve (12) months of the permit effective date, prepare and submit to the Agency a feasibility study that identifies the method, timeframe, and costs of reducing phosphorus levels in its discharge to a level meeting a potential future effluent standard of 0.5 and 0.2 mg/L. The study shall evaluate the costs of the application of these limits on a monthly, seasonal, and annual average basis."

The second special condition states:

The Agency has determined that the Permittee's treatment plant effluent is located upstream of a waterbody or stream segment that has been determined to have a phosphorus related impairment. This determination was made upon reviewing available information concerning the characteristics of the relevant waterbody/segment and the relevant facility (such as quantity of discharge flow and nutrient load relative to the stream flow). A phosphorus related impairment means that the downstream waterbody or segment is listed by the Agency as impaired due to dissolved oxygen and/or offensive condition (algae and/or aquatic plant growth) impairments that is related to excessive phosphorus levels.

The Permittee shall develop, or be a part of a watershed group that develops, a Nutrient Assessment Reduction Plan (NARP) that will meet the following requirements:

- A. The NARP shall be developed and submitted to the Agency by December 31, 2023. This requirement can be accomplished by the Permittee, by participation in an existing watershed group or by creating a new group. The NARP shall be supported by data and sound scientific rationale.
- B. The Permittee shall cooperate with and work with other stakeholders in the watershed to determine the most cost-effective means to address the phosphorus related impairment. If other stakeholders in the watershed will not cooperate in developing the NARP, the Permittee shall develop its own NARP for submittal to the Agency to comply with this condition.
- C. In determining the target levels of various parameters necessary to address the phosphorus related impairment, the NARP shall either utilize the recommendations by the Nutrient Science Advisory Committee or develop its own watershed-specific target levels.
- D. The NARP shall identify phosphorus input reductions by point source discharges and non-point source discharges in addition to other measures necessary to remove phosphorus related impairments in the watershed. The NARP may determine, based on an assessment of relevant data, that the watershed does not have an impairment related to phosphorus, in which case phosphorus input reductions or other measures would not be necessary. Alternatively, the NARP could determine that phosphorus input reductions from point sources are not necessary, or that phosphorus input reductions from both point and nonpoint sources are necessary, or that phosphorus input reductions are not necessary and that other measures, besides phosphorus input reductions, are necessary.
- E. The NARP shall include a schedule for the implementation of the phosphorus input reductions by point sources, non-point sources and other measures necessary to remove phosphorus related impairments. The NARP schedule shall be implemented as soon as possible and shall identify specific timelines applicable to the Permittee.
- *F.* The NARP can include provisions for water quality trading to address the phosphorus related impairments in the watershed. Phosphorus nutrient trading

cannot result in violations of water quality standards or applicable antidegradation requirements.

- G. The Permittee shall request modification of the permit within 90 days after the NARP has been completed to include necessary phosphorus input reductions identified within the NARP. The Agency will modify the NPDES permit, if necessary.
- H. If the Permittee does not develop or assist in developing the NARP, and such a NARP is developed for the watershed, the Permittee will become subject to effluent limitations necessary to address the phosphorus related impairments-The Agency shall calculate these effluent limits by using the NARP and any applicable data. If no NARP has been developed, the effluent limits shall be determined for the Permittee on a case-by-case basis, so as to ensure that the Permittee's discharge will not cause or contribute to violations of the dissolved oxygen or narrative water quality standards.

In addition, all of the WWTPs that are members of the DRWW are subject to additional special conditions in their respective NPDES permits as follows:

"The Permittee shall conduct monthly water quality sampling in the receiving stream both upstream and downstream of the NPDES outfall for the following parameters: dissolved phosphorus, total phosphorus, total organic carbon, chlorophyll a, dissolved oxygen, total ammonia nitrogen, nitrate/nitrite, total Kjeldahl nitrogen, pH, total suspended solids, volatile suspended solids, and temperature. The results shall be submitted to the Agency by March 31 of each year. The Permittee may work cooperatively with the DRWW to conduct monitoring and prepare a single annual monitoring report that is common among DRWW permittees."

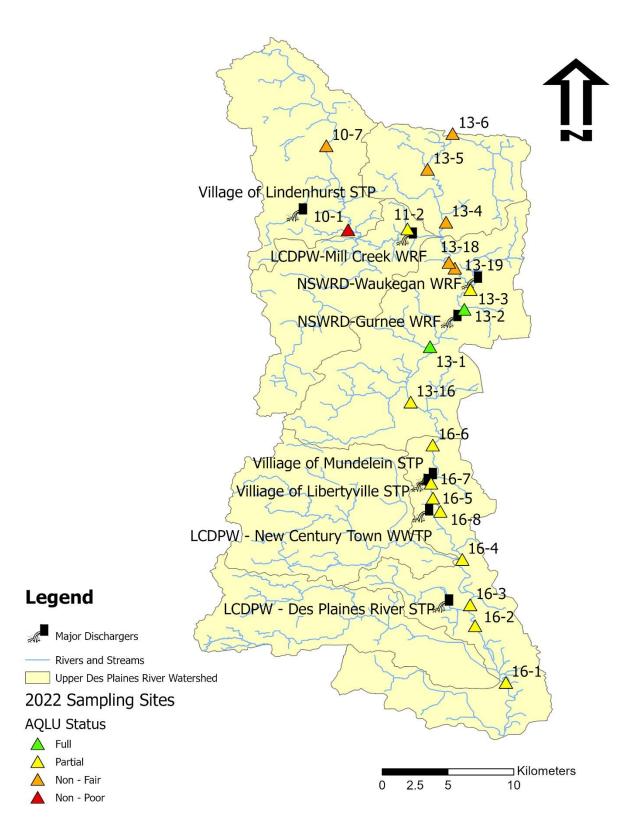
Nutrient Assessment Reduction Plan (NARP)

The State of Illinois developed the Illinois Nutrient Loss Reduction Strategy (NLRS; State of Illinois 2018) to deal with the enrichment of Illinois surface waters by primary nutrients (N and P). As part of the NLRS Illinois EPA developed a process termed the Nutrient Assessment Reduction Plan (NARP) which is to be developed for major wastewater treatment facilities by December 31, 2023. A report entitled *Nutrient Assessment Reduction Plan for The Upper Des Plaines River* (Geosyntec 2023) was submitted by DRWW to IEPA in compliance with the NPDES Special Conditions deadline. Depending on the acceptance of the DRWW NARP report and its conclusions and recommendations by IEPA, additional controls on discharges of N and P could be forthcoming or not.

Nonpoint Sources

Nonpoint sources in the 2022 study area included a mix of agricultural and urban sources, the

latter of varying intensities ranging from light suburban to heavy urban and industrial land uses. These have been extensively classified and delineated by the Lake Co. SMC. Hydromodification of stream and river flows and habitat also occurs with the former being influenced by land uses and the latter mostly in the form of legacy channelization and riparian encroachment by agriculture and urban and suburban development. The influence of legacy hydromodification is especially severe and long lasting in the upper 10 miles of the mainstem and upstream from the Illinois:Wisconsin state line.


Sampling Sites Selection and Locations

A Monitoring Strategy for the Des Plaines River Watershed was developed by the Monitoring Committee of the Des Plaines River Watershed Workgroup in 2015 (DRWW 2016). The spatial allocation of sites was established by the DRWW for water sampling in 2015 and this was used as the core for the initial allocation of additional biological and habitat sites. The 2020 survey of the Des Plaines River mainstem was the initial sampling of the mainstem Des Plaines River outside of the yearly rotation that began in 2017 following a watershed wide survey in 2016. The 2022 site locations are a continuation of the 2020 survey. Future surveys are contingent on future modifications to the Monitoring Strategy by the DRWW in the near future.

Spatial Survey Design

MBI developed a combined intensive pollution survey and geometric allocation of sites for the sampling of fish, macroinvertebrates, and habitat in 2016 (MBI 2017). This consisted of deriving progressive geometric panels of drainage area and assigning sampling sites where these occurred throughout the Upper Des Plaines watershed. Adding targeted sites to fill gaps in the longitudinal continuum left by the DRWW tiered design to fulfill a pollution survey design for the mainstem and major tributaries resulted in a total of 70 sites. Each sampling site was assigned a unique DRWW numeric site code, a river mile, and UTM coordinates.

The 2022 study area included 20 sites including 17 on the mainstem Des Plaines River, two (2) sites on North Mill Creek, and a single (1) site on Mill Creek(Figure 2). All sites except upstream of the wetland riffle (13-19) were sampled for habitat, fish, and macroinvertebrates, and meter-read water quality at a minimum (Figure 3). Macroinvertebrates were not collected at 13-19 due to water depths being too deep to collect a multihabitat sample. Fourteen (14) sites were sampled with YSI Datasonde recorders continuously and deployed for approximate one-week periods during July 2022. The Datasonde deployed at the former Hollister Dam site (16-7) was lost to a debris jam that formed after a period of elevated flows in July. Benthic chlorophyll-a samples were collected during the same week of short-term deployment at each Datasonde site. DRWW deployed permanent Datasondes at three locations that were used to supplement the short-term analyses and support long-term data analyses for the 2020-23 period. DRWW grab water samples in 2022 were collected in accordance with designations as Tier 1-3, for which specific analytes varied (Table 5).

Figure 3. Location of biological, chemical, and habitat sampling sites in the DRWW study area in 2022 showing aquatic life use (AQLU) attainment status. Site codes correspond to the sites listed in Table 5.

Table 5. Locations of sampling sites in the Year 2 Des Plaines River study area in 2022 showing the site ID, river or stream, location, river mile, and what sampling was performed at each (F – fish; MH – multihabitat macroinvertebrate; QHEI – Qualitative Habitat Evaluation Index; Datasonde; Benthic Chlorophyll a, and water chemistry in accordance with Tier 1-3 designation.

					Drainage				Benthic	DR	NW Wa	ater
			River		Area				Chloro-	С	Chemistry	
Site ID	River	Location	Mile	Gradient	(mi. ²)	Biota	Habitat	Datasonde	phyll a	Tier 1	Tier 2	Tier 3
13-6	Des Plaines River	Russel Rd.	109.30	5.64	123.7	F, MH	QHEI	DRWW	Х	1		
13-5	Des Plaines River	IL Rt. 173	106.60	5.15	137.3	F, MH	QHEI	July 18-21	Х		2	
13-4	Des Plaines River	Wadsworth Road	102.90	4.67	145.6	F, MH	QHEI	July 18-21	Х		2	
13-18	Des Plaines River	Above Riffle Structure	99.72	2.63	213.2	F, MH	QHEI	July 18-21	Х			3
13-19	Des Plaines River	Below Riffle Structure	99.30	2.63	212.9	F, MH	QHEI	July 18-21	Х			3
13-3	Des Plaines River	U.S. Rt. 41	98.70	4.26	220.3	F, MH	QHEI	July 18-21	Х	1		
13-2	Des Plaines River	McClure Ave.	96.82	4.04	225.4	F, MH	QHEI	July 18-21	Х	1		
13-1	Des Plaines River	IL Rt. 120	94.20	3.61	232.0	F, MH	QHEI	DRWW	Х	1		
13-16	Des Plaines River	Buckley Rd.	90.60	3.32	253.8	F, MH	QHEI					3
16-6	Des Plaines River	Rockland Rd.	87.10	2.70	261.4	F, MH	QHEI	July 21-25	Х	1		
16-7	Des Plaines River	Hollister Dam site	84.60	2.77	266.5	F, MH	QHEI	Lost	Х			3
16-5	Des Plaines River	IL Rt. 60 (Town Line Rd.)	83.60	2.72	268.1	F, MH	QHEI	July 21-25	Х	1		
16-8	Des Plaines River	Wright Woods Dam site	82.90	2.64	268.9	F, MH	QHEI					3
16-4	Des Plaines River	Half Day Rd.	80.00	2.39	273.2	F, MH	QHEI	DRWW	Х	1		
16-3	Des Plaines River	Deerfield Rd.	76.70	2.24	314.7	F, MH	QHEI	July 22-27	Х			3
16-2	Des Plaines River	E. Lake Cook Rd.	75.40	2.19	324.0	F <i>,</i> MH	QHEI	July 21-28	Х	1		
16-1	Des Plaines River	Palantine Frontage Rd.	71.70	2.13	358.7	F <i>,</i> MH	QHEI	July 21-28	Х	1		
11-2	Mill Creek	Hunt Club Rd.	1.71	7.40	59.9	F, MH	QHEI	July 25-28	Х		2	
10-1	North Mill Creek	Milborne Rd.	1.10	5.24	31.9	F, MH	QHEI	July 25-28	Х			3
10-7	North Mill Creek	Edwards Rd.	11.30	2.60	19.2	F, MH	QHEI					
	SNAP sites; DRWW continuosly deployed Datasondes SNAP sites; short-term Datasonde data used.											

METHODS

All methods followed Illinois EPA and DNR procedures, except as modified to meet the needs of the DRWW, but with the goal of providing comparable data to evaluate aquatic life and recreational use attainment. This includes fish, macroinvertebrates, habitat, bacteria, chemical parameters (water), continuous data for selected parameters, and benthic chlorophyll a. Recreational use attainment was evaluated with Escherichia coli and using the U.S. EPA national criteria since none were available from Illinois EPA.

Chemical/Physical Water Quality – Methods

Water Column Sampling

The specific methods of data collection followed Illinois EPA (2012a) and chemical laboratory analyses were provided by Lake County Environmental Laboratory. The chemical/physical parameter categories (demand, nutrients, metals, and organics) and the frequency of sample collection are summarized in DRWW Monitoring Strategy (DRWW 2018). DRWW assigned tiers to the sampling sites based on the frequency of sampling and parameter groups as follows:

- **Tier 1:** Nine (9) sites located in the Des Plaines River mainstem were sampled monthly for water May through September, and November and March (seven times per year) for all demand, nutrient, and bacteria parameters.
- **Tier 2:** Three (3) sites (2 Des Plaines River, 1 Mill Creek) were sampled monthly from May through September, and in November and March (seven times per year) for the majority of demand, nutrient, and bacteria parameters.
- **Tier 3:** Seven (7) sites (6 Des Plaines River, 1 North Mill Creek) were sampled from May through September, and in November and March (seven times per year) for the majority of demand, nutrient, and bacteria parameters.

The total number of analytes by parameter category in 2022 appears in Table 6.

Nutrient Effects Assessment Procedure

The 2022 assessment of the effects from nutrient enrichment was modeled after the Stream Nutrient Assessment Procedure (SNAP) and the large rivers nutrient assessment both developed by Ohio EPA (Ohio EPA 2015b; Miltner 2018). Each includes consideration of the width of the diel variation in continuously measured D.O. and the biomass of chlorophyll a in benthic and sestonic algae in addition to the concentrations of total phosphorus and inorganic nitrogen (nitrates + nitrites) at each of the 17 Datasonde and benthic chlorophyll-a locations. Other nutrient related parameters such as total suspended solids and total Kjeldahl nitrogen (TKN) are also included. Datasondes were deployed by MBI for 4-5 day periods during periods of low streamflow and elevated summer ambient temperatures (YSI 2012, 2017). DRWW were used to determine five states of nutrient enrichment, not nutrients excellent, not nutrients good, possibly nutrients, enriched by nutrients, and highly enriched by nutrients, via a operated three continuous monitoring locations starting in June 2020. Together these results weighted

Table 6 . Summary of the number of water chemistry parameters and samples collected by
parameter category in the Upper Des Plaines River study area in 2022.

	Water Quality Analytes					
Parameters	Parameters	Samples				
All	15	1704				
Fecal bacteria <i>(E. coli)</i>	1	48				
Field pH & Temperature	2	266				
Demand ¹	21	169				
Nutrients ²	6	738				
Ionic Strength ³	4	483				

scoring process. This process assigned weighted scores to each variable in accordance with the narrative (excellent, good, fair, poor, and very poor) assessment of each including the fish and macroinvertebrate IBI scores which, along with the diel D.O. swing, and chlorophyll a benthic biomass and sestonic concentrations, comprised the highest weighted primary variables. The QHEI score, total P, and maximum D.O. were weighted as secondary parameters, with nitrate-N, minimum D.O., TSS, and TKN weighted as tertiary parameters. The sum of parameter scores at each site was normalized to a 0-100 scale with lower scores indicating greater adverse effects from nutrient enrichment that can be exacerbated by local hydrological and habitat conditions in addition to low flow sources of nutrient loadings.

Biological Assemblage Sampling

Biological assemblages in the 2020 study area included fish and macroinvertebrates at 20 instream locations for fish and 19 locations for macroinvertebrates. Biological and habitat sampling adhered to a summer-early fall index period of June 16-October 15 for fish and July 1-September 30 for macroinvertebrates. A habitat evaluation was performed at all fish sites using the QHEI (Ohio EPA 2006) and a site description accompanied the Illinois EPA multihabitat macroinvertebrate samples. All sampling occurred during periods of summer-fall base flows.

Fish Assemblage Methods

Fish were collected at 20 sites using both boatable and wading electrofishing units. Larger sites located on the mainstem Des Plaines River were sampled using an inflatable raft mounted electrofishing unit in a downstream direction, and sites located in Mill Creek and North Mill Creek were sampled using a tote barge mounted or a bank set long-line electrofishing units. Wadeable sites were sampled at a distance of 0.20 km in a downstream to upstream direction, headwater sites were sampled at a distance of 0.15 km in a downstream to upstream direction, and boatable sites were sampled at a distance of 0.50 km in an upstream to downstream direction, and boatable sites were sampled at a distance of 0.50 km in an upstream to downstream direction. Tote barge and bank set long-line units used pulsed D.C. current produced by a Smith-Root 2.5 GPP control box powered by a 2.5 kW alternator and a 5.5 HP gasoline mounted engine. The raft mounted unit used pulsed D.C. current produced by a Smith-Root 5.0 GPP control box powered by a 5.0 kW alternator and an 11.0 HP gasoline mounted engine.

Deference was given to the most effective method given the prevailing site and water characteristics. A dip net was used to assist in the capture of stunned fish. A two or three-person crew consisting of a fish crew leader and one or two field technicians conducted the sampling under summer-fall base flow conditions.

Captured fish were placed in a live well or live net for processing at the end of each site. Water was regularly replaced and/or aerated to maintain adequate oxygen levels in the water to minimize mortality. Samples from each site were processed by enumerating and recording weights by species and by life stage (young-of-the-year, juvenile, and adult) on a standard water resistant field sheet. The incidence of external anomalies was recorded following procedures outlined by Ohio EPA (1996, 2015a) and refinements made by Sanders et al. (1999). Fish were released back into the water after they were identified to species, examined for external anomalies, and weighed either individually or in batches. Larval fish, if collected, were not included in a sample and fish measuring less than 25 mm in length were generally excluded as a matter of practice (excepting adults of small species). All sites were marked with GPS coordinates (beginning, middle, and end of a sampling reach) and site data was recorded on a standard field form.

While the majority of captured fish were identified to species in the field, any uncertainty about field identification required vouchering for laboratory identification. Voucher specimens were preserved in borax buffered 10% formalin solution and labeled by date, stream, and geographic identifier (e.g., river mile and site number). Regional ichthyology keys were used including the Fishes of Illinois (Smith 1979) and updates available through the Illinois Natural History Survey (INHS). Scientific nomenclature followed Page et al. (2012). Vouchers were deposited at The Ohio State University Museum of Biodiversity (OSUMB) in Columbus, OH. The data were used to calculate the Illinois Fish Index of Biotic Integrity (fIBI; Smogor 2000, 2005) as the primary assessment of fish assemblage quality and the Modified Index of Well-Being (MIwb; Ohio EPA 1987) in addition to expressions of species richness and relative abundance.

Macroinvertebrate Methods

Macroinvertebrate methods followed the Illinois EPA multi-habitat method (Illinois EPA 2011c,d) at all sites (Table 3). The Illinois EPA multi-habitat method involves the selection of a sampling reach that has instream and riparian habitat conditions typical of the assessment reach. Sampling reach requirements included flow conditions that approximate typical summer base flows, the absence of highly influential tributary streams, the presence of one riffle/pool sequence or analog (i.e., run/bend meander or alternate point-bar sequence) if present, and a length of at least 300 feet and a maximum of up to 800 feet. The collection of macroinvertebrates was accomplished with a d-frame dip net in all bottom-zone and bank-zone habitat types that occurred within a sampling site. Water conditions must allow a sampler to apply the 11-transect habitat-sampling method or to estimate with reasonable accuracy via visual or tactile cues the amount of each of several bottom-zone and bank-zone habitat types. All sites were marked with GPS coordinates (beginning and end of a sampling reach) and site data was recorded on a standard field form.

Multi-habitat macroinvertebrate samples were field preserved in 10% formalin. Upon delivery to the MBI lab in Hilliard, OH the preserved samples were transferred to 70% ethyl alcohol. Laboratory procedures followed the Illinois EPA (2011e) methodology which requires the production of a 300-organism subsample from a gridded tray following a scan and pre-pick of large and/or rare taxa. Taxonomic resolution was at the lowest practicable resolution for the common macroinvertebrate assemblage groups such as mayflies, stoneflies, caddisflies, midges, and crustaceans, which goes beyond the genus level requirement of Illinois EPA (2011g). However, the calculation of the Macroinvertebrate IBI (mIBI) adhered to the Illinois EPA methods by using genera as the benchmark level of taxonomic resolution for mIBI scoring. Analyses using the lowest resolution data were accomplished.

Area of Degradation and Attainment Values

The Area of Degradation Value (ADV) and Area of Attainment Value (AAV) were used to demonstrate the trajectory of the biological assemblages and aquatic life use attainment through time and within pollution impact reaches of the Upper Des Plaines River northern tributaries, Year 4, study area. The ADV (Yoder and Rankin 1995; Yoder et al. 2005) was originally developed impact reach that is defined by the impact from one or more sources downstream through an initial zone of impact and through zones of partial to complete recovery. For results that surpass a biocriterion, this is expressed as an Area of Attainment Value (AAV) that quantifies the extent to which the minimum attainment criterion is surpassed. The ADV/AAV correspond to the area of the polygon formed by the longitudinal profile of fIBI and mIBI scores and the straight line boundary formed by their respective biocriterion, the ADV below and the AAV above. The computational formula (after Yoder et al. 2005) is:

 $ADV/AAV = \Sigma [(aIBIa + aIBIb) - (pIBIa + pIBIb)] * (RMa - RMb), for a = 1 to n, where;$

alBIa = actual IBI at river mile a, alBIb = actual IBI at river mile b, pIBIa = IBI biocriterion at river mile a, pIBIb = IBI biocriterion at river mile b, RMa = upstream most river mile, RMb = downstream most river mile, and n = number of samples

The average of two contiguous sampling sites is assumed to integrate biological assemblage status for the distance between the points. The intensive pollution survey design typically positions sites in close enough proximity to sources of stress and along probable zones of impact and recovery so that meaningful changes are adequately captured. We have observed biological assemblages as portrayed by their respective indices to change predictably in proximity to major sources and types of pollution in numerous instances (Ohio EPA1987a; Yoder and Rankin 1995; Yoder and Smith 1999; Yoder et al. 2005). Thus, the longitudinal connection of contiguous sampling points produces a reasonably accurate portrayal of the extent and severity of impairment in a specified river reach as reflected by the indices (Yoder and Rankin 1995). The total ADV/AAV for a specified river segment is normalized to ADV/AAV

units/mile for making comparisons between years and rivers. The ADV is calculated as a negative (below the biocriterion) expression; the AAV is calculated as a positive (above the biocriterion) expression. Each depicts the extent and degree of impairment (ADV) and attainment (AAV) of a biological criterion, which provides a more quantitative depiction of quality than do pass/fail descriptions. It also allows the visualization of incremental changes in conditions that may not alter the pass/fail status, but are nonetheless meaningful in terms of incremental change over space and time. In these analyses, the Warmwater Habitat (WWH) biocriterion for the fish and macroinvertebrate indices, which vary by use designation and ecoregion, were used as the threshold for calculating the ADV and AAV for the upper Des Plaines River mainstem. The General Use for aquatic life biocriteria for the fIBI and mIBI represent the minimum goal required by the Clean Water Act (CWA) for the protection and propagation of aquatic life, thus these were used as a standard benchmark for the ADV/AAV analyses herein.

Habitat Assessment

The QHEI (Rankin, 1989, 1995; Ohio EPA, 2006) was utilized as the primary habitat assessment methodology at each site. The assessment was conducted as a part of the fish assemblage method by the fish crew leader, who is trained and experienced in using the QHEI, during the initial sampling pass. The QHEI is comprised of six categories of habitat that influence the quality of the aquatic biota. The sum of the six categories ranges from 0-100, with scores of 60 or greater generally being regarded as sufficient to support the Genera Use for aquatic life while scores below 45 indicate substantial deficiencies in habitat for aquatic communities. These rules-of-thumb have been altered by the NE IL IPS analyses and the newer thresholds were used to assess habitat quality. A QHEI matrix (Rankin 1995) showing the occurrence of good and modified attributes was also developed to evaluate the overall capacity of the stream habitat to support the General Use at each site and to diagnose potential deficiencies that might be limiting to the aquatic assemblages.

Data Management

All data were managed by MBI in internal databases that permit ready access and analysis. Biological and habitat data is stored in a routine based on the Ohio ECOS format that MBI uses for all biological data management tasks. Biological data analysis included the calculation of the Illinois fish and macroinvertebrate IBIs for determining General Use aquatic life status and the accompanying data attributes to enhance the diagnosis of impairments. Habitat data were analyzed using the QHEI and also via a QHEI attributes matrix to aid in assessing habitat related impairments. Summaries of fish species and macroinvertebrate taxa relative abundance, QHEI metrics, and QHEI field sheets by site and by sampling date are provided in Appendices A-C.

Determining Use Attainability

Illinois EPA offers a single aquatic life use designation that applies to all rivers and streams through the General Use provision of the Illinois WQS. This is the presumed use applicable to all

rivers and streams in Illinois which includes the 2022 study area. An assessment of aquatic life use attainability is therefore not a routine outcome of a biological and water quality assessment and was not performed herein. However, the data collected is adequate to determine if the habitat is a limiting factor for any instances of non-support. Stressor thresholds, Restorability, and Susceptibility/Threat factors, and other analyses based on five narrative categories consisting of excellent, good (meets General Use), fair, poor, and very poor quality were completed. These boundaries simulate the application of a tiered aquatic life use (TALU) framework.

Causal Diagnosis

Describing the causes and sources associated with observed biological impairments relies on an interpretation of multiple lines of evidence including water chemistry data, sediment chemistry data, habitat data, effluent data, land use data, and biological response signatures (Yoder and Rankin 1995; Yoder and DeShon 2003). Thus the assignment of associated causes and sources of biological impairment in this report represents the association of impairments (based on response indicators) with stressor and exposure indicators using linkages to the bioassessment data based on previous experiences with analogous situations and impact types. This was done by relating exceedances of chemical thresholds such as chronic and acute water quality criteria and relevant biological effects thresholds for water and sediment chemistry from the NE IL IPS tool and dashboard to further refine the relative importance of categorical and/or parameter specific causes. The reliability of the identification of associated causes and sources is increased where other such prior associations have been observed. This process relies on multiple lines of evidence concerning the biological response which is the ultimate measure of success in water quality management. The NE IL IPS derived exceedance thresholds for chemical and habitat parameters used in the causal analyses were also used in the tabular and graphical presentation of the chemical water and sediment results. When combined with the Restorability and Susceptibility/Threat rankings this improved the certainty of the assignment of causes and sources to an observed biological impairment.

Hierarchy of Water Indicators

A carefully conceived ambient monitoring approach, using cost-effective indicators comprised of ecological, chemical, and toxicological measures, can ensure that all relevant pollution sources are judged objectively based on environmental results. A tiered approach that links the results of administrative actions with true environmental measures was employed in our analyses. This integrated approach is outlined in Figure 4 and includes a hierarchical continuum from administrative to true environmental indicators. The six "levels" of indicators include:

- Level 1 actions taken by regulatory agencies (permitting, enforcement, grants);
- Level 2 responses by the regulated entity (treatment works, pollution prevention);
- Level 3 changes in discharged quantities (pollutant loadings);
- Level 4 changes in ambient conditions (chemical/physical water quality, habitat);
- Level 5 changes in uptake and/or assimilation (tissue contamination, biomarkers, assimilative capacity); and,

• Level 6 - changes in health, ecology, or other effects (ecological condition, human and wildlife health).

Completing the Cycle of WQ Management: Assessing and Guiding Management Actions with Integrated Environmental Assessment

Indicator Levels

1: Management actions Administrative Indicators [permits, plans, grants, 2: Response to management enforcement, abatements] Stressor Indicators [pollutant 3: Stressor abatement loadings, land use practices] 4: Ambient conditions Exposure Indicators [pollutant levels, habitat quality, ecosystem 5: Assimilation and uptake process, fate & transport] Response Indicators [biological 6: Biological response metrics, multimetric indices]

Ecological "Health" Endpoint

Figure 4. The hierarchy of administrative and environmental indicators which can be used to support monitoring and assessment, reporting, and an evaluation of the effectiveness of pollution controls on a receiving stream. This is atterned after a model developed by U.S. EPA (1995a,b) and enhanced by Karr and Yoder (2004).

In this process, the results of administrative activities (levels 1 and 2) are linked to water quality (levels 3, 4, and 5) which translates to a response (level 6). The administrative steps taken by Illinois EPA to issue NPDES permits (Level 1) and the steps taken by the permit holders (Level 2) are easily described and quantified. Quantifying changes in the loadings of pollutants (Level 3) can be affected by the quality and completeness of the effluent monitoring which includes the capture of stressors that affect the receiving streams. Likewise, documenting changes in ambient conditions (Level 4) can also be affected by the quality and completeness of the chemical/physical monitoring that not only includes the parameters but also the spatial design in relation to sources of pollution. This in turn informs about how pollution sources tax the assimilative capacity (Level 5) of a receiving stream. The end result of all the above is portrayed by the response in the biological indicators which is expressed as attainment or non-attainment of the Illinois General Use aquatic life thresholds for the fish and macroinvertebrate IBIs (Illinois EPA 2016). Symptoms expressed by the biota beyond the index scores can be useful in aiding the causal diagnosis as a feedback loop in the hierarchy of indicators process.

Superimposed on this hierarchy is the concept of stressor, exposure, and response indicators.

- *Stressor* indicators generally include activities that have the potential to degrade the aquatic environment such as pollutant discharges (permitted and unpermitted), land use effects, and habitat modifications.
- *Exposure* indicators are those which measure the effects of stressors and can include whole effluent toxicity tests, tissue residues, and biomarkers, each of which provides evidence of biological exposure to a stressor or bioaccumulative agent.
- *Response* indicators are generally composite measures of the cumulative effects of stress and exposure and include the more direct measures of community and population response that are represented here by the biological indices which comprise the Illinois EPA biological endpoints.

Causal Associations

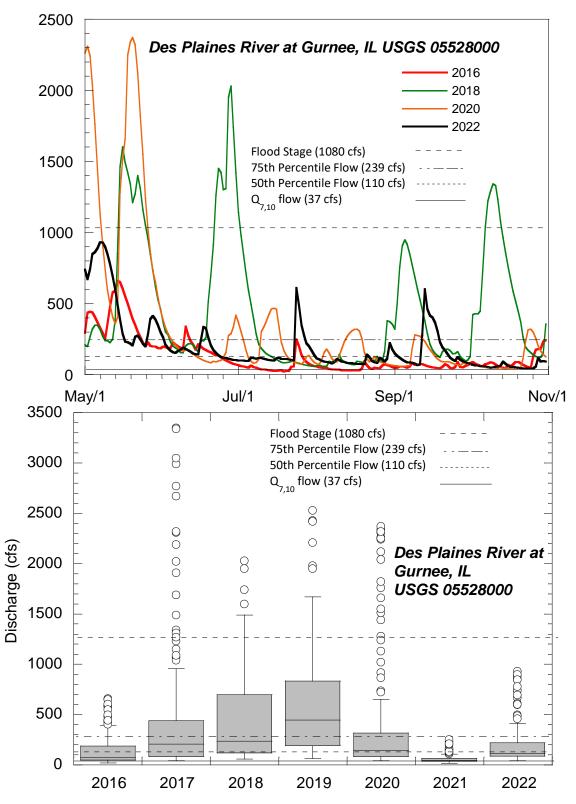
Describing the causes and sources associated with biological impairments in the study area involved the interpretation of multiple lines of evidence that included water chemistry, sediment chemistry, habitat, and effluent data, a general knowledge about upstream land uses, and biological response signatures within the biological data itself. The assignment of causes and sources of biological impairment result from the association of the impairment with exceedances of water quality criteria or other response-based thresholds and the proximity to sources of pollution. This process was strengthened by the availability of regionally derived stressor effect thresholds from the NE IL IPS (MBI 2020a) that classified stressor levels into excellent, good, fair, poor, and very poor categories.

RESULTS - CHEMICAL/PHYSICAL WATER QUALITY

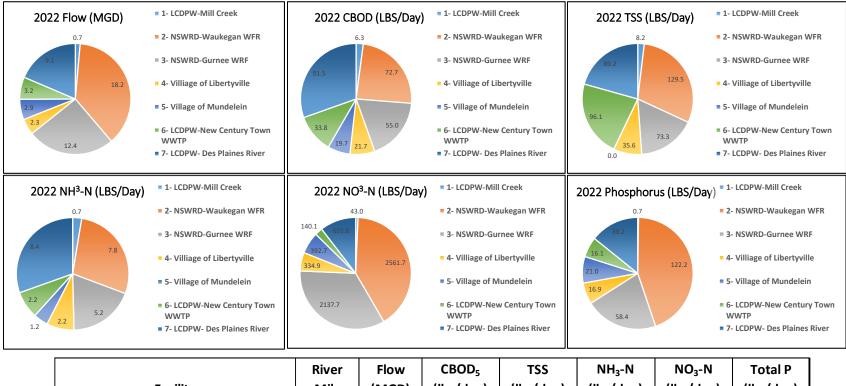
Chemical/physical water quality in the 2022 study area was characterized by grab sample data collection for the water column 4-6 times at each Tier 1-3 sites during summer-fall base flows and by hand held meter only at Tier 4 sites. Commonly detected chemical parameters were compared either to the criteria in the Illinois WQS, Illinois EPA non-standard benchmarks, reference benchmarks, and/or biologically derived thresholds from the NE Illinois IPS tool and IPS Dashboard (MBI 2020a). As such, the chemical/physical data herein serves as an indicator of the degree of exposure and stress in support of using the biological data to assess the attainment of designated aquatic life uses and to assist in assigning associated causes and sources. Parameter groupings included field, demand, ionic strength, nutrients, heavy metals, and organic compounds. Bacteria data were collected by grab samples and were used primarily to determine the status of recreational uses in accordance with U.S. EPA National Water Quality Criteria (U.S. EPA 2012).

Flow Regime

The flow regime of the 2022 study area during the period of May 1 – October 31 was characterized by examining the flow hydrograph for the 2016, 2018, 2020, and 2022 monitoring


years based and a frequency plot of all years 2016-22 based on the U.S. Geological Survey gauge on the Des Plaines River at Gurnee, IL (05528000; Figure 4). The flow regime in 2016 had the lowest sustained flows among the four years examined in the hydrograph (Figure 5, upper) with minimum daily flows below the seven-day ten-year (Q7,10) low flow of 37 cfs and the median below the 50th percentile flow of 110 cfs. The upper quartile flow was below the 75th percentile flow of 239 cfs and the statistical maximum was 400 cfs with the maximum outlier at 700 cfs. However, the boxplot of all years showed 2021 to have the lowest flow among the seven (7) years examined (Figure 4, lower). Spates of elevate flow were missing entirely with a maximum of less than 240 cfs. Twenty-five (25) percent of the minimum flows in 2021 were at or below the Q_{7,10} low flow of 37 cfs. Flows were also low in 2022 with a pattern similar to 2016 with both having extended periods of low flows and slightly higher peak flows below 1000 cfs. Compared to 2016 and 2018 flows were much more variable and higher in 2018 and 2020. More than three fourths of daily flows exceeded the 50th percentile flow of 110 cfs and a statistical maximum of nearly 1500 cfs, well above the flood stage of 1080 cfs. The highest outlier was above 2000 cfs. Daily flows in 2020 were more compressed with a range of <100 cfs to a statistical maximum of 700 cfs, but with an extremely wide range of outliers ranging upwards to nearly 2400 cfs and most above the flood stage of 1080 cfs. All of the extreme high flows occurred prior to mid-June whereas extreme peaks in 2018 flows occurred in July, September, and October and enough to interfere with planned sampling events. Peak flows in 2020 were of a lesser magnitude, but occurred in July and September and enough to interfere with aspects of the monitoring that require extended periods of base flows.

Point Source Effluent Quality


Point source discharges of treated wastewater are a significant contribution of pollutant loadings to the upper Des Plaines River mainstem with design average flows of 78.7 MGD (MGD; or 121.8 cubic feet/second [cfs]) among seven (7) major wastewater treatment plants (WWTPs; Table 4). This total comprises 329% of the Q_{7,10} flow of 37 cfs and 110% of the median (50th percentile) flow of 110 cfs at the USGS Gurnee Gage. In 2022, the annual average discharge flow totaled 48.7 MGD (75.3 cfs) of treated wastewater (61.9% of the total average design flows) which comprised 68% of the median river flow of 110 cfs. As a result, the Upper Des Plaines is considered to be "effluent dominated" which consists primarily of discharged treated wastewater during periods of low flows (Onnis-Hayden et al. 2006). The NSWRD Waukegan, NSWRD Gurnee, and Lake Co. DPW Des Plaines facilities comprised 67-86% of the flow and loadings discharged to the Des Plaines River. Summaries of the 2022 flow and loads from each facility follow in their order of occurrence along the Des Plaines River mainstem from upstream to downstream (Figure 6).

Lake Co. DPW Mill Creek WWTP

The Lake Co. Department of Public Works (DPW) Mill Creek WWTP discharged an annual average flow of 0.7 MGD (NPDES Permit No. IL0071366) which was 1.4% of the total among the seven (7) major treatment plants that directly impact the mainstem of the Des Plaines River (Table 4; Figure 6). The Mill Creek WWTP discharges to Mill Creek one mile upstream of the

Figure 5. River flow measured daily (upper) and seasonally (lower) at the USGS gauge on the Des Plaines River (USGS 05528500) near Gurnee, IL during May 1-October 31, 2016-22. The horizontal lines are the flood stage, 75th percentile, 50th percentile, and the seven-day, ten year (Q_{7,10}) critical low flows.

	111001	110 11	00005	155		100310	Totall
Facility	Mile	(MGD)	(lbs/day)	(lbs/day)	(lbs/day)	(lbs/day)	(lbs/day)
1- LCDPW-Mill Creek	102.0	0.7	6.3	8.2	0.7	43.0	0.7
2- NSWRD-Waukegan WRF	98.1	18.2	72.7	129.5	7.8	2561.7	122.2
3- NSWRD-Gurnee WRF	95.5	12.4	55.0	73.3	5.2	2137.7	58.4
4- Villiage of Libertyville	84.8	2.3	21.7	35.6	2.2	334.9	16.9
5- Village of Mundelein	84.6	2.9	19.7	NR	1.2	392.7	21.0
6- LCDPW-New Century Town WWTP	82.3	3.2	33.8	96.1	2.2	140.1	16.1
7- LCDPW- Des Plaines River WWTP	76.4	9.1	91.5	89.2	8.4	655.6	39.2
2022 Totals		48.7	300.7	431.9	27.7	6265.7	274.6
NR - not reported.							

Figure 6. Proportions of third quarter (July 1-September 30) averages of effluent flow (MGD) and pollutant loadings (lbs./day) discharged by seven (7) major WWTPs to the mainstem Des Plaines River in 2022. Discharges are listed in order from upstream to downstream in the inset table below the pie charts.

confluence with the Des Plaines River and it is the uppermost major facility that directly affects the mainstem. The design average flow (DAF) for the facility is 0.9 million gallons per day (MGD) and the design maximum flow (DMF) for the facility is 2.1 MGD. Treatment consists of screening, grit removal, activated sludge, sedimentation, filtration, ultraviolet disinfection, sludge handling facilities, and biological phosphorus removal with chemical addition as a backup system. In terms of 2022 effluent quality, the Mill Creek WWTP discharged the lowest proportion of loadings of CBOD₅ (2.1%), TSS (1.9%), NH₃-N (2.6%), NO₃-N (0.7%), and total P (0.2%; Figure 4).

NSWRD Waukegan WRF

The North Shore Water Reclamation District (NSWRD) Waukegan Water Reclamation Facility (WRF) discharged an annual average flow of 18.2 MGD (NPDES Permit No. IL0030244) which was 37.4% of the total among the seven (7) major treatment plants that directly impact the mainstem of the Des Plaines River (Table 4; Figure 5). The design average flow (DAF) for the facility is 22.0 million gallons per day (MGD) and the design maximum flow (DMF) is 44.0 MGD. Treatment consists of screening, grit removal, excess flow treatment, Imhoff tanks, primary settling, two-stage activated sludge, phosphorus removal, rapid sand filters, and ultraviolet (UV) disinfection. Sludge treatment includes gravity belt thickening, belt press dewatering, drying, and landfill disposal/land application. The NSWRD is a member of the Des Plaines Watershed Workgroup (DRWW). In 2022 the Waukegan WRF discharged the highest proportion of loadings of TSS (30.0%), NO₃-N (40.9%), and total P (44.5%), and the second highest loadings of CBOD₅ (24.2%) and NH₃-N (28.1%).

NSWRD Gurnee WRF

The NSWRD Gurnee Water Reclamation Facility (WRF) discharged an annual average flow of 12.4 MGD (NPDES Permit No. IL0035092) which was 25.5% of the total among the seven (7) major treatment plants that directly impact the mainstem of the Des Plaines River (Table 4; Figure 5). The design average flow (DAF) for the facility is 23.6 million gallons per day (MGD) and the design maximum flow (DMF) for the facility is 47.2 MGD. Treatment consists of screening, grit removal, excess flow treatment, two-stage activated sludge, primary and secondary clarifiers, biological phosphorus removal, tertiary filtration, UV disinfection, sludge processing and drying. In terms of 2022 effluent quality the Gurnee WRF discharged the second highest proportion of NO₃-N (34.1%) and total P (21.3%), the third highest proportion of CBOD₅ (18.3%), and NH₃-N (18.9%) loadings, and the fourth highest loading of TSS (17.0%).

Libertyville WWTP

The Libertyville WWTP discharged an annual average flow of 2.3 MGD (NPDES Permit No. IL0029530) which was 4.7% of the total among the seven (7) major treatment plants that directly impact the mainstem of the Des Plaines River (Table 4; Figure 5). The design average flow (DAF) for the facility is 4.0 million gallons per day (MGD) which is also the design maximum flow (DMF). Treatment consists of screening, grit removal, primary sedimentation, activated sludge, final clarifiers, filtration, disinfection (chlorination and dechlorination), sludge handling facilities, and excess flow treatment and disinfection. Libertyville is a member of the Des Plaines

Watershed Workgroup (DRWW). In terms of 2022 effluent quality the Libertyville WWTP discharged the fourth highest proportion of loadings of NH₃-N (7.9%), the fifth highest proportion of loadings of CBOD₅ (7.2%), TSS (8.2%), NO₃-N (5.3%), and total P (6.2%). The 2022 loading of NH₃-N of 2.2 lbs./day was a substantial decline from the 21.1 lbs./day in 2020.

Mundelein WWTP

The Mundelein WWTP discharged an annual average flow of 2.9 MGD (NPDES Permit No. IL0029530) which was 6.0% of the total among the seven (7) major treatment plants that directly impact the mainstem of the Des Plaines River (Table 4; Figure 5). The design average flow (DAF) for the facility is 4.0 million gallons per day (MGD) and the design maximum flow (DMF) for the facility is 5.0 MGD. Treatment consists of screening, grit removal, primary sedimentation, activated sludge, final clarifiers, filtration, disinfection (chlorination and dechlorination), sludge handling facilities, and excess flow treatment and disinfection. Mundelein *is not* a member of the Des Plaines Watershed Workgroup (DRWW). In terms of 2022 effluent quality the Mundelein WWTP discharged the fourth highest proportion of loadings of NO3-N (6.3%) and total P (7.7%), and the sixth highest loadings of CBOD₅ (6.5%), NH3-N (7.9%) and total P (1.2%). TSS was not reported in 2022.

Lake Co. DPW New Century Town WWTP

The Lake Co. Department of Public Works (DPW) New Century Town WWTP discharged an annual average flow of 3.2 MGD (NPDES Permit No. IL0022071) which was 6.5% of the total among the seven (7) major treatment plants that directly impact the mainstem of the Des Plaines River (Table 4; Figure 5). The design average flow (DAF) for the facility is 2.9 million gallons per day (MGD) and the designed maximum flow (DMF) for the facility is 6.0 MGD. Treatment consists of screening, grit removal, activated sludge, settling, filtration, disinfection, and sludge handling facilities. Lake Co. is a member of the Des Plaines Watershed Workgroup (DRWW). In terms of 2022 effluent quality the Lake Co. New Century Town WWTP discharged the second highest loadings of TSS (22.3%), the fourth highest proportion of loadings of CBOD₅ (11.2 %), and second lowest proportions of NO₃-N (2.2%) and total P (5.9%) loadings.

Lake Co. DPW Des Plaines WWTP

The Lake Co. Department of Public Works (DPW) Des Plaines WWTP discharged an annual average flow of 9.1 MGD (NPDES Permit No. IL0022055) which was 18.6% of the total among the seven (7) major treatment plants that directly impact the mainstem of the Des Plaines River (Table 4; Figure 5). The Des Plaines WWTP discharges to Aptakisic Creek 0.8 miles upstream of the confluence with the Des Plaines River and it is the lowermost major facility that directly affects the mainstem. The design average flow (DAF) for the facility is 16.0 million gallons per day (MGD) and the design maximum flow (DMF) for the facility is 51.8 MGD. Treatment consists of screening, grit removal, activated sludge, settling, filtration, disinfection, and sludge handling facilities. Lake Co. is a member of the Des Plaines WWTP discharged the highest proportions of loadings of CBOD₅ (30.4%) and NH₃-N (30.5%), third highest loadings of TSS (20.6%), NO3-N (10.5%), and total P (14.3%). The 2022 total P loading of 39.2 lbs./day was a substantial

reduction over the value of 552.5 lbs./day reported in 2020 when it comprised 35.7% of the 1549.2 lbs./day total discharged by the seven major discharges.

Overall POTW Loadings Summary

Overall changes between 2020 and 2022 included a 1.6 MGD or 3.1% increase in flows and increases in loadings of TSS (21.6 lbs./day or 5.3%) and NO₃-N (523.0 lbs./day or 9.1%). Decreases were more substantial and occurred for CBOD₅ (40.8 lbs./day or 12.3%) and NH₃-N (19.3 lbs./day or 41.1%). The 2022 total P loading of 274.6 lbs./day is a reduction of 1274.6 lbs./day or 82.3% in 2020 and was the largest effluent loading reduction. The differences between 2022 and 2018 are even greater with a 7.0 MGD reduction in effluent volume, a 394 lbs./day or 56.7% reduction in CBOD₅, a 335 lbs./day or 43.7% reduction in TSS, a 105.3 lbs./day or 79.2% reduction in NH₃-N, a 1476.3 lbs./day or 19.1% reduction in NO₃-N, and a 190.7 lbs./day or 41.0% reduction in total P.

Water Column Chemistry

The water column chemistry results were analyzed for spatial (longitudinal) patterns made possible by the pollution survey design in the Upper Des Plaines River mainstem and at a single site in Mill Creek and two sites in North Mill Creek. The results were screened for exceedances of Illinois WQS, Illinois non-standard benchmarks, regional reference benchmarks, and primarily for exceedances of biological effect thresholds derived from the NE Illinois IPS (MBI 2023) in the Year 5 study area.

Exceedances of Biological Effect and Reference Thresholds

The principal purpose of chemical sampling in a bioassessment is to provide data that supports the interpretation and the assignment of causes associated with biological impairments and to determine threats at attaining sites. Chemical exceedances of biological effect thresholds are essential to that process and have previously included the Illinois WQS, regional reference benchmarks, and other national and regional biological effects compendia. Some of these consist of correlations between concentrations of substances that correspond to biological endpoints derived from laboratory studies.

Two regional studies that were used previously included correlative effects levels of different chemicals by the DuPage River Salt Creek Working Group (DRSCWG; Miltner et al. 2010) in northeastern Illinois and the Metropolitan Sewer District of Greater Cincinnati (MSDGC; MBI2015) in southwest Ohio. NOAA Screening Quick Reference Tables (SQRT; Buchman 2008) were also used especially for chemicals that are not covered in the Illinois WQS. The more recently available NE Illinois IPS (MBI 2023) thresholds for water column chemical, sediment, and habitat and land use parameters appear in Tables 7-9 and have replaced the use of the previous thresholds. They are now the first choice for assessing these variables in the tables and figures of the results as each is applicable in the Des Plaines Year 5 study area. NE Illinois derived sediment chemical thresholds are provided in Table 8 and were supplemented with the

Table 7. Biological effect thresholds derived from Northeast Illinois streams and rivers for selected water column parameters as part of the
NE Illinois IPS development and used to assess results from the Year 4 Des Plaines River study area. The most limiting of the fish or
macroinvertebrate assemblages for each parameter are indicated along with thresholds for excellent, good, fair, poor, and very poor
biological condition along with FIT score (see Appendix D), sample N, and regional reference values for NE Illinois rivers and streams
<350 mi.².

		_						Thresholds by Na	Reference Site	Refer-			
Parameter			Parameter	Limiting								Values (Median-2X	ence
Code	Variable Name	Units	Group	Assemblage	FIT Score	Sample N	Excellent	Good	Fair	Poor	Very Poor	IQR)	Site N
P665	Total Phosphorus	mg/L	Nutrients	Fish	0.04	1464	<u><</u> 0.106	<u><</u> 0.277	>0.277	>1.002	>1.726	0.088 (0.062-0.115)	35
P94	Conductivity	μS/cm	Ionic	Fish	0.05	1464	<u><</u> 739	<u><</u> 1038	>1038	>1208	>1378	922 (705-1158)	40
P70300	Total Dissolved Solids	mg/L	Ionic	Fish	0.10	1464	<u><</u> 453.8	<u><</u> 558.0	>558.0	>651.2	>744.5	614 (512-664)	28
DO_MIN	Minimum DO	mg/L	Demand	Macros	0.10	985	>8.0	<u>></u> 6.5	<5.47	<4.44	<3.40	8.6 (6.5-9.6)	29
P625	Total Kjeldahl Nitrogen	mg/L	Demand	Macros	0.14	985	<u><</u> 1.07	<u><</u> 1.12	>1.12	>1.63	>2.14	0.74 (0.30-0.99)	30
P940	Chloride, Total	mg/L	Ionic	Fish	0.17	1464	<u><</u> 40.00	<u><</u> 120.00	>120.0	>184.9	>249.8	154 (80.3-171.3)	33
P299	Mean Dissolved Oxygen	mg/L	Demand	Macros	0.21	985	>9.42	<u>></u> 9.25	<9.25	<6.11	<3.05	8.6 (7.9-9.0)	40
P310	BOD (5-Day)	mg/L	Demand	Macros	0.21	985	<u><</u> 1.30	<u><</u> 2.35	>2.35	>3.45	>4.54	2 (2.0-2.2)	27
P610	Total Ammonia	mg/L	Nutrients	Macros	0.28	985	<u><</u> 0.084	<u><</u> 0.100	>0.100	>0.190	>0.280	0.1 (0.10-0.10)	34
P630	Nitrate-N	mg/L	Nutrients	Fish	0.29	1464	<u><</u> 3.767	<u><</u> 5.045	>5.045	>7.344	>9.643	0.39 (0.29-0.97)	32
P929	Sodium, Total	mg/L	Ionic	Fish	0.29	1464	<u><</u> 16275	<u><</u> 4500	>45000	>79056	>113112	14200 (10375-22500	21
P530	Total Suspended Solids	mg/L	Demand	Fish	0.32	1464	<u><</u> 17.50	<u><</u> 31.60	>31.60	>35.15	>38.69	9.2 (5.4-20.3)	33
P615	Nitrite-N	mg/L	Nutrients	Macros	0.41	985	<u><</u> 0.014	<u><</u> 0.040	>0.040	>0.068	>0.096	0.01 (0.01-0.01)	27
DO_MAX	Maximum DO	mg/L	Demand	Macros	0.94	985	<u><</u> 10.36	<u><</u> 12.21	>12.21	>14.24	>16.28	8.74 (8.21-9.45)	29
P82078	Turbidity	NTU	Demand	Macros	2.61	985		<u><</u> 19.3	>19.3	>25.9	>32.5	11.0 (4.5-24.5)	7
P549	Volatile Suspended Solids	mg/L	Demand	Fish	2.81	1464	<u><</u> 5.000	<u><</u> 7.769	>7.769	>9.825	>11.88	6.0 (4.8-7.4)	5
P945	Sulfate, Total	mg/L	Ionic	Macros	6.49	985	<u><</u> 58.27	<u><</u> 73.1	>73.10	>83.45	>93.81	74.6 (61.8-81.8)	4
P937	Potassium, Total	mg/L	Ionic	Macros	10.13	985	<u><</u> 3158	<u><</u> 6300	>6300	>7718	>9129	2400 (1574-2817)	21
P916	Calcium, Total	mg/L	Ionic	Fish	Unimodal	1464	<u><</u> 84425	<u><</u> 86067	>86067	>86313	>86559	54,000 (80-74,250)	21
						Mete	als and Tox	ics					
P1092	Zinc, Total	μg/L	Metal_Tox	Fish	0.13	1464	<u><</u> 7.47	< <u>9.78 [CS: 55.5]</u>	>9.78	>11.00	>12.22 [309.7]	2.0 (2.0-7.0)	23
P1027	Cadmium, Total	μg/L	Metal_Tox	Fish	0.93	1464	<u><</u> 0.937	<u><</u> 0.974 [CS: 2.70]	>0.974	>0.983	>0.991 [33.63]	<mdl (0.17)<="" td=""><td>23</td></mdl>	23
P1042	Copper, Total	μg/L	Metal_Tox	Fish	1.75	1464		<pre><4.480 [CS: 18.65]</pre>	>4.480	>4.969	>5.458 [AS: 30.1]	2.00 (1.96-4.15)	22
P1051	Lead, Total	μg/L	Metal_Tox	Macros	2.11	985	<u><</u> 2.851	<3.335 [CS; 18.0]	>3.335	>3.884	>4.434 [AS: 343]	0.24 (0.20-0.57)	23
P1082	Strontium	μg/L	Metal_Tox	Fish	2.69	1464	<u><</u> 169.1	<u><</u> 190.8	>190.8	>280.4	>370.1	150 (135-181)	21
P1055	Manganese, Total	μg/L	Metal_Tox	Macros	2.74	985	<u><</u> 53.71	<pre><77.03 [CS: 3319]</pre>	>77.03	>107.1	>137.2 [AS: 7808]	32.0 (24.1-38.2)	23
P1067	Nickel, Total	μg/L	Metal_Tox	Macros	3.26	985		<3.470 [CS: 103.6]	>3.470	>9.585	>15.70 [AS: 932]	5.0 (1.5-21)	14
P1105	Aluminum, Total	μg/L	Metal_Tox	Fish	4.54	1464	<u><</u> 310.0	<u><</u> 393.3	>393.3	>560.2	>727.0	200 (128-449)	21
P1007	Barium, Total	μg/L	Metal_Tox	Fish	4.77	1464	<u><</u> 74.1	<84.88	>84.88	>101.8	>118.6	56.3 (44.3-64.7)	21
P720	Cyanide, Total	μg/L	Metal_Tox	Macros	5.17	985	<u><</u> 8	<10 [CS: 5.2]	>10	>10	>10 [AS: 22]	3 (2-10)	6
P1002	Arsenic	μg/L	Metal_Tox	Macros	9.19	985		<u><</u> 3.455 [CS: 190]	>3.455	>5.029	>6.603 [AS: 360]	Insufficient Data	
P1034	Chromium, Total	μg/L	Metal_Tox	Fish	10.17	1464	<u><</u> 1.398	<1.540 [CS: 167]	>1.540	>2.682	>3.824 [AS: 3503]	1.73 (1.30-2.00)	6

CS - Illinois WQS chronic standard equated to Good; AS - Illinois WQS acute standard equated to Very Poor.

Table 8. Biological effect thresholds derived from Northeast Illinois streams and rivers for selected sediment chemical parameters as part of the NE Illinois IPS development and used to assess results from the Year 4 Des Plaines River study area. The most limiting of the fish or macroinvertebrate assemblages for each parameter are indicated along with thresholds for excellent, good, fair, poor, and very poor biological condition, FIT score (see Appendix D), and sample N for NE Illinois rivers and streams <350 mi.².

Parameter			Parameter	Limiting			Thresholds by Narrative Condition Category					Literature Thresholds					
Code	Variable Name	Units	Group	Assemblage	FIT Score	Sample N	Excellent	Good	Fair	Poor	Very Poor	TEC/LEL	PEC/PEL	Short	Source		
P1093	Zinc	mg/kg	Metal_Tox	Macros	2.22	985	<u><</u> 75.00	<u><</u> 100.0	>100.0	>133.9	>167.8	121	459	170.0	MacDonald		
P34524	Benzo(g,h,i)perylene	μg/kg	PAH	Macros	2.32	985		<u><</u> 335.0	>335.0	>792.1	>1249	170	320		MacDonald		
P34406	Indeno(1,2,3-cd)pyrene	µg/kg	PAH	Macros	2.41	985		<u><</u> 260.5	>260.5	>623.3	>986.2	200	3200		MacDonald		
P1043	Copper	mg/kg	Metal_Tox	Macros	2.42	985	<u><</u> 19.00	<u><</u> 29.78	>29.78	>40.45	>51.12	31.6	149	37.0	MacDonald		
P34233	Benzo(b)fluoranthene	μg/kg	PAH	Macros	2.51	985		<u><</u> 520.8	>520.8	>1437	>2354	240	13400		MacDonald		
P1068	Nickel	mg/kg	Metal_Tox	Macros	2.67	985		<u><</u> 19.50	>19.50	>22.52	>25.53	22.7	48.6	26.0	MacDonald		
P34250	Benzo(a)pyrene	μg/kg	PAH	Macros	2.85	985		<u><</u> 230.0	>230.0	>798.3	>1367	150	1450		MacDonald		
P34472	Pyrene	μg/kg	PAH	Macros	2.85	985		<u><</u> 393.0	>393.0	>1570	>2747	195	1520		MacDonald		
P1052	Lead	mg/kg	Metal_Tox	Macros	3.01	985	<u><</u> 15.50	<u><</u> 24.80	>24.80	>33.04	>41.27	35.8	128	60.0	MacDonald		
P34529	Benzo[a]anthracene	μg/kg	PAH	Macros	3.48	985		<u><</u> 239.0	>239.0	>699.4	>1160	108	1050		MacDonald		
P34323	Chrysene	μg/kg	PAH	Macros	3.51	985		<u><</u> 266.0	>266.0	>958.3	>1651	166	1290		MacDonald		
P34379	Fluoranthene	μg/kg	PAH	Macros	3.91	985		<u><</u> 774.0	>774.0	>2432	>4091	423	2230		MacDonald		
P1083	Strontium	mg/kg	Metal_Tox	Macros	4.44	985		<u><</u> 81.80	>81.80	>106.8	>131.9	None	None				
P34559	Dibenz(a,h)anthracene	µg/kg	PAH	Macros	4.57	985		<u><</u> 101.0	>101.0	>167.3	>233.7	33	135		MacDonald		
P34223	Anthracene	μg/kg	PAH	Macros	5.10	985		<u><</u> 78.00	>78.00	>119.9	>161.8	46.9	245		CCME		
P34464	Phenanthrene	µg/kg	PAH	Macros	5.10	985		<u><</u> 243.5	>243.5	>803.3	>1363	204	1170		MacDonald		
P1003	Arsenic	mg/kg	Metal_Tox	Macros	6.21	985		<u><</u> 8.65	>8.65	>15.82	>23.67	9.79	33	7.2	MacDonald		
P1029	Chromium	mg/kg	Metal_Tox	Macros	6.29	985	<u><</u> 20.53	<u><</u> 23.30	>23.30	>26.22	>29.15	43.4	111	37.00	MacDonald		
P1053	Manganese	mg/kg	Metal_Tox	Macros	7.08	985	<u><</u> 841.0	<u><</u> 845.5	>845.5	>996.8	>1148	460	1100	1100	MacDonald		
P1078	Silver	mg/kg	Metal_Tox	Macros	7.11	985		<u><</u> 0.483	>0.483	>1.261	>2.039	1.6	2.2		MacDonald		
P1108	Aluminum	mg/kg	Metal_Tox	Macros	8.26	985		<u><</u> 6480	>6480	>8272	>10064						
P1008	Barium	mg/kg	Metal_Tox	Macros	8.88	985		<u><</u> 141.0	>141.0	>150.3	>168.7			145			
P1028	Cadmium	mg/kg	Metal_Tox	Macros	11.00	985		<u><</u> 0.745	>0.745	>1.354	>1.963	0.99	4.98	2.000	MacDonald		
P1013	Beryllium	mg/kg	Metal_Tox	Macros	ND ^a	985		<u><</u> 0.411	>0.411	>0.496	>0.581						
P1103	Tin	mg/kg	Metal_Tox	Macros	ND ^a	985		<u><</u> 8.86	>11.00	>16.73	>24.60						
P34203	Acenaphthylene	µg/kg	PAH	Macros	ND^{a}	985		<u><</u> 86.38	>86.38	>103.6	>120.9	5.87	128		CCME		
P34208	Acenaphthene	μg/kg	PAH	Macros	ND ^a	985		<u><</u> 84.25	>84.25	>104.8	>125.3	6.71	88.9		CCME		
P34262	Delta-BHC	μg/kg	PAH	Macros	ND ^a	985		<u><</u> 2.098	>2.098	>6.19	>10.28						
P34384	Fluorene	μg/kg	PAH	Macros	ND ^a	985		<u><</u> 84.25	>84.25	>104.8	>125.3	77.4	536		MacDonald		
P34445	Naphthalene	μg/kg	PAH	Macros	ND ^a	985		<u><</u> 86.38	>86.38	>103.6	>120.9	34.6	391		CCME		

^a - Not determined (ND) due to a high number of non-detects

MacDonald - MacDonald, D. D., C. G. Ingersoll, and T. A. Berger. 2000. Development and Evaluation of Consensus-Based Sediment Quality Guidelines

for Freshwater Ecosystems. Arch. Environ. Contam. Toxicol. 39, 20-31.

CCME - Canadian Council of Ministers of the Environment (CCME). 1999. Canadian sediment quality guidelines for the protection of aquatic life. Canadian environmental quality guidelines, 1999, Canadian Council of Ministers of the Environment, Winnipeg, MB.

Table 9. Biological effect thresholds derived from Northeast Illinois streams and rivers for selected habitat and land use variables as part of the NE Illinois IPS development and used to assess results from the Year 4 Des Plaines River study area. The most limiting of the fish or macroinvertebrate assemblages for each variable are indicated along with thresholds for excellent, good, fair, poor, and very poor biological condition along with FIT score (see Appendix D), sample N, and regional reference values for NE Illinois rivers and streams <350 mi.².

			Parameter	Limiting			Thresholds by Narrative Condition Category					Reference Site Values (Median -	Reference
Parameter Code	Variable Name	Units	Group	Assemblage	FIT Score	Sample N	Excellent	Good	Fair	Poor	Very Poor	2X IQR)	Site N
EMBEDDED	Embeddedness Score	QHEI Units	Habitat	Fish	0.03	1393	<u><</u> 1.3	<u><</u> 1.6	>1.6	>2.4	>3.2	2 (2-2)	29
Urban	Urban (Ust. WS)	Wtd. %	Land Use	Fish	0.03	2657	<u><</u> 8.8	<u><</u> 45.0	>45.0	>63.2	>81.3	8.7 (3.0-9.5)	48
QHEI	QHEI Score	QHEI Units	Habitat	Fish	0.04	1393	<u>></u> 84.5	<u>></u> 75.9	<75.9	<50.1	<25.0	84 (76-90)	34
SUBSTRAT	Substrate Score	QHEI Units	Habitat	Fish	0.04	1393	<u>></u> 16.0	<u><</u> 15.0	<15.0	<9.9	<5.0	8 (7-9)	33
WWH_ATTR	Good Habitat Attributes	Number	Habitat	Fish	0.04	1393	<u>></u> 9	<u>></u> 8	<8	<5	<2	16 (15-17)	34
Imperv	Impervious (30 m)	Wtd. %	Land Use	Fish	0.04	2657	<u><</u> 18.3	<u><</u> 30.5	>30.5	>53.4	>76.4	2.1 (0.0-14.7)	48
Imperv	Impervious (30 m Clipped)	Wtd. %	Land Use	Fish	0.04	2657	<u><</u> 13.4	<u><</u> 26.7	>26.7	>50.9	>75.1	2.1 (0.0-6.1)	48
CHANNEL	Channel Score	QHEI Units	Habitat	Fish	0.07	1393	<u>></u> 16.8	<u>></u> 14.0	<14.0	<9.2	<4.6	16 (13-19)	34
COVER	Cover Score	QHEI Units	Habitat	Fish	0.07	1393	<u>></u> 16.0	<u>></u> 14.0	<14.0	<9.2	<4.6	16 (16-17)	34
SILTCOVE	Silt Cover Score	QHEI Units	Habitat	Fish	0.07	1393		<u><</u> 2.0	>2.0	>2.7	>3.33	2 (2-3)	29
Develop	Developed (Ust. WS)	Wtd. %	Land Use	Fish	0.07	2657	<u><</u> 9.1	<45.6	>45.6	>63.6	>81.5	9.1 (2.9-9.6)	48
RIPARIAN	Riparian Score	QHEI Units	Habitat	Fish	0.10	1393		<u>></u> 6.0	<6.0	<4.0	<2.0	7.0 (6.0-9.5)	34
Imperv	Impervious (Ust. WS)	Wtd. %	Land Use	Macros	0.10	3096	<u><</u> 5.6	<u><</u> 13.2	>13.2	>41.8	>70.5	5.2 (2.1-5.4)	48
DEPTH	Depth Score	QHEI Units	Habitat	Fish	0.11	1393		<u>></u> 10.0	<10.0	<6.6	<3.3	10 (9-11)	33
MWH_ATTR	Poor Habitat Attributes	Number	Habitat	Fish	0.12	1393	<u>0</u>	1	>1	>3	>6	2 (1-5)	20
HYD_QHEI	Hydro-QHEI	QHEI Units	Habitat	Fish	0.13	1393	<u>></u> 17.0	<u><</u> 19.5	<19.5	<12.9	<6.4	20 (14-22)	33
CURRENT	Current Score	QHEI Units	Habitat	Fish	0.14	1393		<u>></u> 7.0	<7.0	<4.6	<2.3	11 (5.8-11.0)	33
POOL	Pool Score	QHEI Units	Habitat	Fish	0.15	1393	<u>></u> 11.25	<11.25	<10.0	<6.6	<3.3	11.5 (10-12)	34
Heavurb	Heavy Urban (Ust. WS)	Wtd. %	Land Use	Macros	0.17	3096	<u><</u> 7.7	<29.3	>29.3	>52.6	>76.0	5.5 (1.1-6.0)	48
RIFFLE	Riff< Score	QHEI Units	Habitat	Fish	0.27	1393	<u>></u> 5.88	<u>></u> 5.75	<5.75	<3.9	<1.9	6 (5-7)	34
GRADIENT	Gradient Score	QHEI Units	Habitat	Fish	0.31	1393		<u>></u> 10.0	<10.0	<6.6	<3.3	10 (10-10)	34
Ag	Agricultural (Ust. WS)	Wtd. %	Land Use	Macros	4.82	3096	<u>></u> 87.1	<u>></u> 62.1	<62.1	<41.4	<20.5	83.9 (11.7-85.4)	48
GRADIENT	Gradient (ft/mi)	feet/mile	Habitat	Fish	12.20	1393	<u>></u> 8.8	<u>></u> 4.3	<4.3	<2.8	<1.4	8.6 (4.9-11.3)	34
Ag	Agricultural (30 m)	Wtd. %	Land Use	Macros	16.66	3096	<u><</u> 3.4	<u><</u> 10.1	>10.1	>29.7	>59.97	0.0 (0.0-0.4)	48

threshold and probable effect levels (TEL and PEL) established by MacDonald et al. (2000) and alternate levels by IEPA (Short 1998). Habitat and land use related variables appear in Table 9. The severity of exceedances of these values offered by the multiple narrative classes (i.e., excellent, good, fair, poor, and very poor) are used to support the assignment of the severity of causes of biological impairments. The chemical water column grab sample results are displayed graphically and in tabular format for selected parameters and with exceedances of the IPS derived effect thresholds. With the exception of continuously measured D.O., there were no exceedances of other parameters that have IEPA water quality criteria.

Demand and Nutrient Related Parameters

Demand and nutrient related parameters consist of those related to the discharges of treated and untreated sewage, organic enrichment from point and nonpoint sources, nutrient parameters and their effects, and physical parameters such as total suspended solids, pH, and temperature.

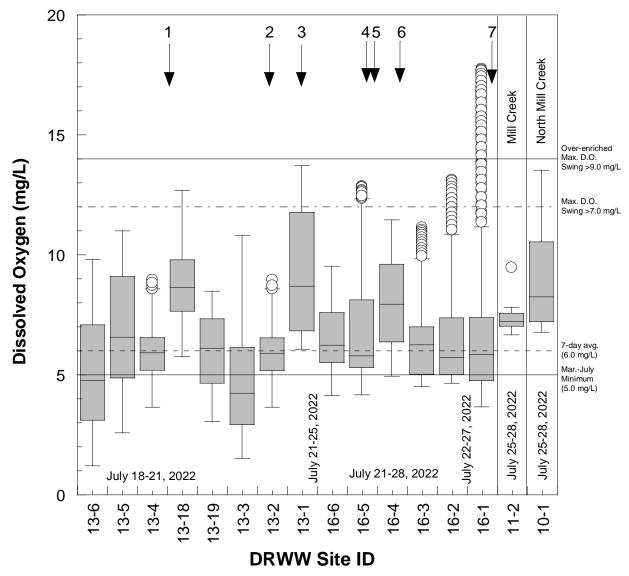
Dissolved Oxygen (D.O.)

D.O. was assessed with data collected by Datasondes deployed permanently at three locations and short-term deployments over 4-5 days at 14 locations. The data was used to assess exceedances of the Illinois D.O. standard, assess daily variations in D.O. as part of the Stream Nutrient Assessment Procedure (SNAP), and a new assessment of the long term data during the summer-early fall spanning the period of record 2020-2022. Each analysis revealed the importance of D.O. in the Upper Des Plaines River and important insights about causes and sources of oxygen demanding substance and effects of nutrient enrichment.

D.O. Exceedances

The most complete assessment of exceedances of the Illinois dissolved oxygen (D.O.) standards was done with continuous data obtained from three (3) DRWW permanent Datasonde locations. A less complete assessment was done with the short-term deployments at 14 additional locations during late July. The data from the continuously deployed long-term locations were used to evaluate the weekly and rolling average aspects of the IEPA D.O. standard in addition to the seasonally varied minimums. There were 36 individual exceedances at the three permanent long term and 11 short-term locations (Table 10). Certain aspects of the Illinois D.O. standard could only be assessed at the long term locations hence the higher number of exceedances at sites 13-6, 13-1, and 16-4. The most numerous exceedances occurred at site 13-6 (RM 109.3) and included excursions of the minimum D.O. (5.0 mg/L) in June, July, and August on a total of 50 days, the 7-day minimum (4.0 mg/l) from August 1-13 and August 16-October 13, and the 7-day average (<6.0 mg/l) on three separate occasions -April 28-29, May 31-June 1, and July 6-31 (Table 10). Fewer exceedances of the minimum D.O. occurred at site 13-1 (RM 94.2) for 19 days in June and July, the seven day minimum of 4.0 mg/L on August 8, and the 7-day average on two occasions in June (June 18-28 and July 25-28). The third long term Datasonde located at 16-4 (RM 80.0) had excursions of the minimum for 7 days in June and July and two exceedances of the 7-day average D.O. criterion during June 28**Table 10.** Exceedances of the different parts of the Illinois dissolved oxygen (D.O.) water quality standard among the three continuously operated Datasondes (blue shaded) and short-term Datasondes in the upper Des Plaines River during the summer-early fall period of 2022. The month, date, and duration in days of each exceedance, the D.O. criterion, and the narrative standard that was exceeded are listed by site in an upstream to downstream direction.

			River			Narrative
Site ID	River	Year	Mile	Month/Date/Duration	Criterion	Standard
	Des Plaines River	2022	109.3	June - # Days:11	<5.0 mg/l	Not to exceed
	Des Plaines River	2022	109.3	July - # Days:28	<5.0 mg/l	Not to exceed
	Des Plaines River	2022	109.3	Aug - # Days:11	<3.5 mg/l	Not to exceed
13-6	Des Plaines River	2022	109.3	8/1-8/13	<4.0 mg/l	7-day Minimum
13-0	Des Plaines River	2022	109.3	8/16 - 10/13	<4.0 mg/l	7-day Minimum
	Des Plaines River	2022	109.3	4/28 - 4/29	<6.0	7-day Average
	Des Plaines River	2022	109.3	5/31 - 6/ 1	<6.0	7-day Average
	Des Plaines River	2022	109.3	7/6-7/31	<6.0	7-day Average
13-5	Des Plaines River	2022	106.6	July - # Days: 4	<5.0 mg/l	Not to exceed
13-4	Des Plaines River	2022	102.9	July - # Days: 2	<5.0 mg/l	Not to exceed
15-4	Des Plaines River	2022	102.9	7/18 - 7/21	<6.0	7-day Average
13-19	Des Plaines River	2022	99.3	July - # Days: 2	<5.0 mg/l	Not to exceed
12-19	Des Plaines River	2022	99.3	7/18 - 7/21	<6.0	7-day Average
13-3	Des Plaines River	2022	98.7	July - # Days: 4	<5.0 mg/l	Not to exceed
13-3	Des Plaines River	2022	98.7	7/18 - 7/21	<6.0	7-day Average
13-2	Des Plaines River	2022	96.82	7/18 - 7/18	<6.0	7-day Average
	Des Plaines River	2022	94.2	June - # Days:11	<5.0 mg/l	Not to exceed
	Des Plaines River	2022	94.2	July - # Days: 8	<5.0 mg/l	Not to exceed
13-1	Des Plaines River	2022	94.2	8/8-8/8	<4.0 mg/l	7-day Minimum
	Des Plaines River	2022	94.2	6/18 - 6/28	<6.0	7-day Average
	Des Plaines River	2022	94.2	7/25 - 7/28	<6.0	7-day Average
16-6	Des Plaines River	2022	87.1	July - # Days: 3	<5.0 mg/l	Not to exceed
10-0	Des Plaines River	2022	87.1	7/24 - 7/27	<6.0	7-day Average
16-5	Des Plaines River	2022	83.6	July - # Days: 1	<5.0 mg/l	Not to exceed
10-5	Des Plaines River	2022	83.6	7/21 - 7/22	<6.0	7-day Average
	Des Plaines River	2022	80	June - # Days: 1	<5.0 mg/l	Not to exceed
16-4	Des Plaines River	2022	80	July - # Days: 6	<5.0 mg/l	Not to exceed
10-4	Des Plaines River	2022	80	6/28 - 6/30	<6.0	7-day Average
	Des Plaines River	2022	80	7/6-7/30	<6.0	7-day Average
16.2	Des Plaines River	2022	76.7	July - # Days: 2	<5.0 mg/l	Not to exceed
16-3	Des Plaines River	2022	76.7	7/22 - 7/27	<6.0	7-day Average
16.2	Des Plaines River	2022	75.4	July - # Days: 3	<5.0 mg/l	Not to exceed
16-2	Des Plaines River	2022	75.4	7/25 - 7/25	<6.0	7-day Average
10.1	Des Plaines River	2022	71.7	July - # Days: 4	<5.0 mg/l	Not to exceed
16-1	Des Plaines River	2022	71.7	7/27 - 7/27	<6.0	7-day Average
11-2	Mill Creek	2022	1.71	7/26 - 7/27	<6.0	7-day Average

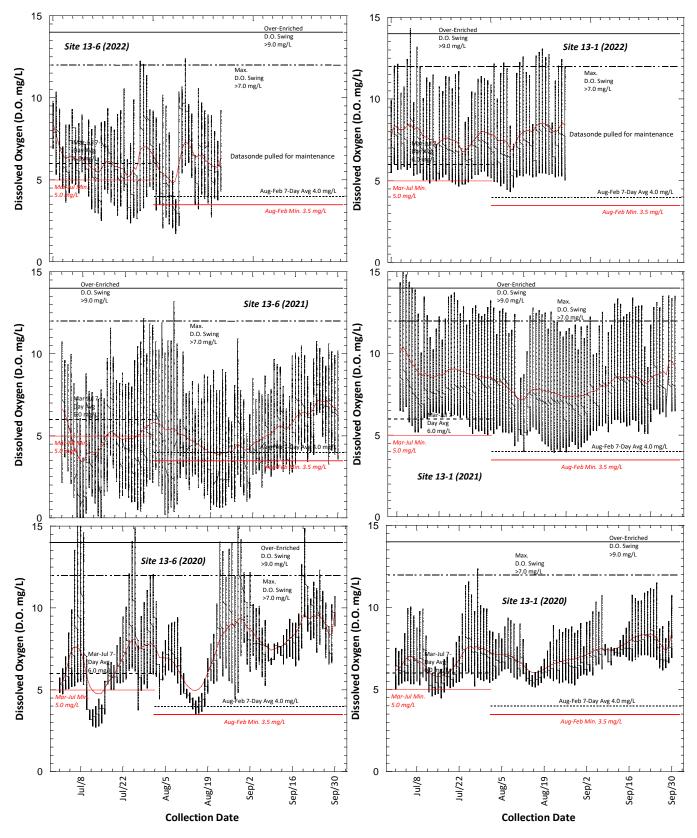

20 and July 6-30. The most frequent exceedances occurred at 13-6 well upstream of the discharges of the largest loadings of oxygen demanding substances from municipal wastewater treatment facilities to the Upper Des Plaines River mainstem. This data was further evaluated as symptom of excessive nutrient enrichment in the modified SNAP assessment at 17 sites which includes the short-term data obtained at 14 sites. The short-term deployments of more numerous Datasonde continuous recorders in late July 2022 recorded exceedances of the not-to-exceed and 7-day average aspects of the IEPA D.O. standard (Figure 7). All of these deployments were made before August 1 hence the minimum was evaluated against the 5.0 mg/L criterion and the 6 mg/L 7-day average criterion. There was insufficient data to evaluate the weekly and rolling average aspects of the IEPA D.O. criteria, so the median was compared to the weekly average of 6.0 mg/L for screening purposes. Exceedances of the 5.0 mg/L minimum criterion occurred at eight locations and the 7-day average at 10 locations (Table 10).

Short-term D.O. Analysis

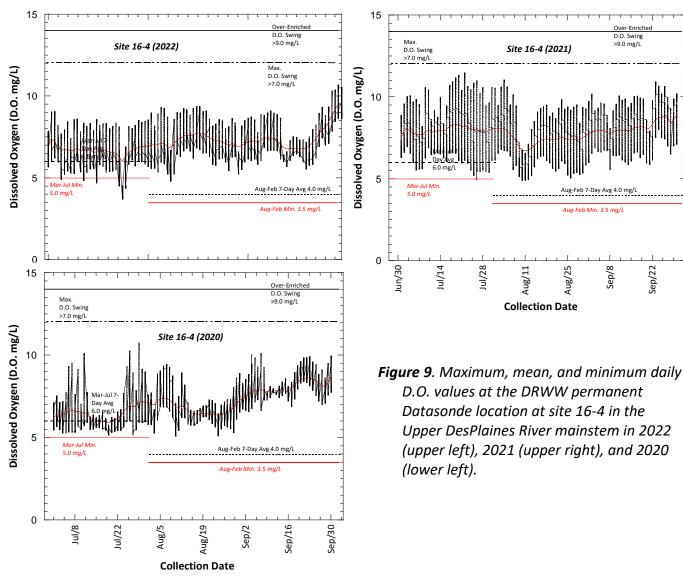
The short-term deployments of more numerous Datasonde continuous recorders in late July 2022 recorded exceedances of portions of the IEPA D.O. criteria (Figure 7). Since these deployments were made before August 1 the minimum was evaluated against the 5.0 mg/L criterion and the 6.0 mg/L 7-day average criterion. Excursions below the 5.0 mg/L minimum occurred at 12 of the 17 locations and were the most extensive in the upper mainstem between site 13-6 (RM 109.3) and site 13-3 (RM 98.7) and lessening in the mainstem downstream. The site at 13-18 (RM 99.72) upstream from the Wetlands riffle and downstream from Mill Creek had no exceedances presumably due to the entry of flow from the LCDPW Mill Creek WWTP. The excursions of the 5.0 mg/L minimum and 6.0 mg/L average returned and increased in magnitude at sites 13-19 (RM 99.30) and 13-2 (RM 96.8). D.O. exceedances were absent at site 13-1 downstream from the entry of flow from the NSWRD Waukegan and Gurnee WRFs, but returned, albeit at a much lesser magnitude, at sites 16-6 (RM 87.1) to 16-1 (RM 71.7) in the lower 8.3 miles of the mainstem. Maximum D.O. values above the 12 mg/L enriched threshold occurred at sites 13-18 (RM 99.72), 13-1 (RM 94.2), 16-5 (RM 83.6), 16-2 (RM 75.4), and 16-1 (RM 71.7) with exceedances of the over-enriched maximum of 14 mg/L at site 16-1 that consisted entirely of outliers above the statistical maximum D.O. The longitudinal pattern suggests that the export of nutrient enrichment effects begins in the upper mainstem and is interrupted by the influence of WWTP flows and culminating in wide diel swings and maximum D.O. values in the lower mainstem. One site in Mill Creek (11-2) and one site in North Mill Creek (10-1) had no exceedances of any D.O. standard. The range of values at site 11-2 was compressed compared to North Mill Creek site 10-1 due to the ameliorating effect of the LCDPW Mill Creek effluent. The variation was wider with an exceedance of the enriched maximum D.O. of 12 mg/L in North Mill Creek due to the more extended periods of low flow and nonpoint sources of nutrient enrichment exacerbated by the modified stream habitat.

Long-term D.O. Analysis

An analysis of the long term D.O. data from the three permanent Datasondes deployed by DRWW was conducted over the summer-early fall period for the years 2020, 2021, and 2022. The results show a more complete picture of the D.O. regime than the short-term data. The


Figure 7. Dissolved oxygen (D.O.) concentrations (mg/L) measured continuously by Datasondes deployed for 3-4 day periods during mid to late July 2022 at 14 short-term locations and 3 long term locations operated by DRWW. Box-and-whisker plots show the minimum, maximum, 25th and 75th percentiles, median, and outliers (>2 interquartile ranges from the median) values. The IEPA March-July minimum (5.0 mg/L) and the 7-day average D.O. criteria (6.0 mg/L) are shown by solid and dashed lines. Maximum D.O. reflective of enriched and over-enriched diel swings are shown by dashed and solid lines. The key to major point sources (arrows and numbers) appears in Figure 5.

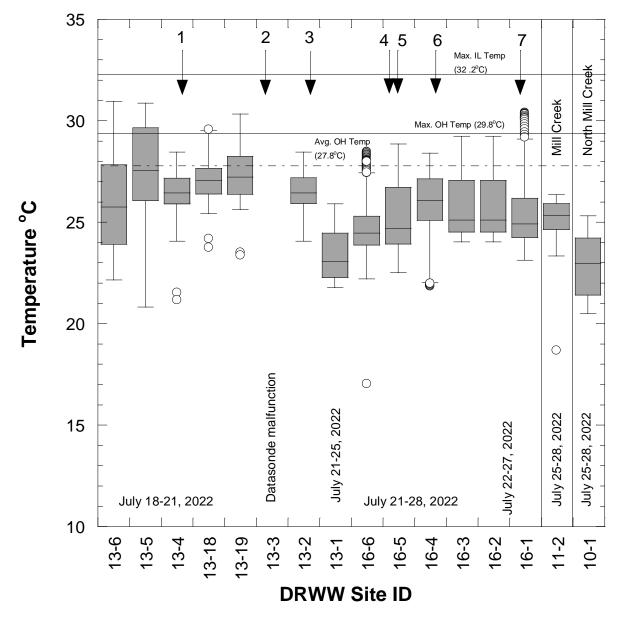
analysis included the mean, maximum, and minimum D.O. and the number of hours less than a series of thresholds included in the Illinois D.O. standard for each year of deployment (Table 11). A graphical depiction of the daily summer-early fall maximum and minimum D.O. at each of the three locations and each year of deployment (Figure 7). With only two exceptions the upstream most site at 13-6 (RM 109.3) had the lowest minimum and mean and highest maximum D.O. values in each of the three years of permanent deployment. Site 13-1 (RM 94.2) had the highest maximum D.O. in 2021 and 2022. Site 13-6 had by far the most frequent


Table 11. Results of the analysis of long term Datasonde D.O. data during July 1-September 30 at the three permanent DRWW sites 13-6, 13-1, and 16-4. The long term D.O. statistics include the minimum, mean, maximum and % hours less than successive intervals of minimum D.O. between 3.5 and 6.0 mg/L. The short-term intervals from 2020 and 2022 are shown for comparison. Yellow highlighted values are the lowest or highest values between the three sites.

						Long-term Interval D.O. Summary Statistics								
Cito	Diver			Earliest	Latast	Min.	Mean	Max. D.O.	% Hours <3.5	9/ 110	9/ 110	9/ 110	% Hours Max. >12	% Hours Max. >14
Site ID	River Mile	Dave	Hours		Latest	D.O.	D.O.	-			% Hours			
	whie	Days	Hours	Date	Date	(mg/L)	(mg/L)	(mg/L) 22	mg/L	<4 mg/L	<5 mg/L	<o l<="" mg="" th=""><th>mg/L</th><th>mg/L</th></o>	mg/L	mg/L
13-6	109.3	53	1247	1-Jul	30-Sep	1.7	6.1	12.4	10.6	17.5	33.1	51.1	0.4	0.0
13-0	94.2	55	1311	1-Jul	30-Sep	4.3	7.8	14.3	0.0	0.0	4.3	28.9	3.8	0.0
16-4	80.0	92	2199	1-Jul	30-Sep	3.7	7.1	14.5	0.0	0.0	2.5	16.7	0.0	0.0
10 4	00.0	52	2155	1 501	30 Sep	5.7		21	0.0	0.4	2.5	10.7	0.0	0.0
13-6	109.3	92	2188	1-Jul	30-Sep	0.1	5.1	13.2	30.4	38.1	52.2	64.1	0.1	0.0
13-1	94.2	92	2170	1-Jul	30-Sep	3.9	8.3	15.0	0.0	0.1	5.1	21.2	10.6	0.7
16-4	80.0	92	2176	1-Jul	30-Sep	4.9	7.8	11.5	0.0	0.0	0.4	9.8	0.0	0.0
	1	1					20	20						
13-6	109.3	92	2206	1-Jul	30-Sep	2.7	7.4	16.3	3.4	7.4	15.8	31.4	4.7	1.3
13-1	94.2	92	2204	1-Jul	30-Sep	4.5	7.0	12.4	0.0	0.0	2.1	25.7	0.9	0.0
16-4	80.0	92	2306	1-Jul	30-Sep	5.1	7.1	10.7	0.0	0.0	0.0	21.0	0.0	0.0
								Short-te	erm Interv	al D.O. S	ummary S	Statistics		
													% Hours	% Hours
							Mean	Max.	% Hours				Max.	Max.
Site	River			Earliest	Latest	Min. DO	DO	DO	<3.5	% Hours	% Hours	% Hours	>12	>14
ID	Mile	Days	Hours	Date	Date	(mg/L)	(mg/L)	(mg/L)	mg/L	<4 mg/L	<5 mg/L	<6 mg/L	mg/L	mg/L
							-	22		1	1	1	1	
13-6	109.3	4	96	18-Jul	21-Jul	2.7	5.7	9.0	5.2	13.0	37.2	58.6	0.0	0.0
13-1	94.2	4	96	18-Jul	21-Jul	5.2	8.1	12.7	0.0	0.0	0.0	21.1	8.1	0.0
16-4	80.0	6	144	22-Jul	27-Jul	5.4	7.1	8.6	0.0	0.0	0.0	9.7	0.0	0.0
	-	-				1		20						
13-6	109.3	4	96	24-Aug	27-Aug	5.4	9.3	13.9	0.0	0.0	0.0	9.9	20.8	0.0
13-1	94.2	4	96	21-Aug	24-Aug	5.4	6.8	8.9	0.0	0.0	0.0	31.0	0.0	0.0
16-4	80.0	4	96	21-Aug	24-Aug	5.1	6.4	7.3	0.0	0.0	0.0	19.4	0.0	0.0

excursions below 3.5, 4.0, and 5.0 mg/L with 30.5% of the hours in 2021 less than 3.5 mg/L. Sites 13-1 and 16-4 had zero hours less than 3.5 mg/L and minimal excursions below 4 mg/L. Site 13-1 had the highest % of hours >12 mg/L, but none were more than 10.6% with most much less than that. The severity and extent of the exceedances at site 13-6 in 2021 was related to the extreme low flows during the summer-early fall period that were lower than the 2016 and 2022 survey years (Table 11; Figure 8). The exceedances and diel swings were lessened at 13-1 and 16-4 due the ameliorating influence of the WWTP flows upstream of each site although the diel swings were the widest in 2021 (Figures 8 and 9).

Figure 8. Maximum, mean, and minimum daily D.O. values at DRWW permanent Datasonde locations at sites 13-6 and 13-1 in the Upper DesPlaines River mainstem in 2022 (upper), 2021 (middle), and 2020 (lower).



The short-term results in 2020 and 2022 had higher minimum and mean values, but lower maximum values. The frequency of exceedances below 3.5 mg/L and 4.0 mg/L were lower than the long term data, but the frequency of exceedance of the maximum >12 mg/L at 13-6 in 202and at 13-1 in 2022 was higher. No values exceeded the over-enriched threshold of 14 mg/L at any of the three DRWW permanent sites, but one short-term site at 16-1 had frequent exceedances in 2022 (Figure 7). The short-term periods are selected to maximize the effects of nutrients which are most apparent under low flow periods. The effect of low flows in the flow and habitat modified upper mainstem is the most apparent in the 2021- 22 results at 13-6.

Temperature (℃)

MBI/2024-3-1

Temperature is a controlling factor for aquatic life, hence it is important to document the thermal regime and note any apparent alterations. Water temperature was likewise measured via grab samples at 20 sites and Datasondes at 17 locations, 14 of which were short-term deployments and three (3) that were continuously operated by DRWW during 2020-22 (Figure 10).

Figure 10. Temperature (°C) measured continuously by Datasondes deployed for 3-4 day periods during mid to late July 2022 at 14 short-term locations and 3 long term locations operated by DRWW. Box-and-whisker plots show the minimum, maximum, 25th and 75th percentiles, median, and outliers (>2 interquartile ranges from the median) values. The IEPA maximum standard of 32.2 °C and Ohio maximum (29.8 °C) and average (27.8 °C) criteria are shown by solid and dashed lines. The key to major point sources (arrows and numbers) appears in Figure 5.

Short-term Temperature Analysis

The 2022 short-term results are displayed as box-and-whisker plots that include the median, upper and lower quartile, maximum, minimum, and outlier values (Figure 10). Typically, the potential for adverse thermal effects are evaluated based on the warmest period of the year and against temperature criteria that are intended to protect aquatic life. The highest summer temperatures were observed in the upper mainstem with the highest maximum at the

upstream most site 13-6 (RM 109.3) and highest median at site 13-5 (RM 106.6). There were no exceedances of the Illinois maximum of 32.2°C, but exceedances of the comparable Ohio maximum of 29.8°C occurred at four of the five upstream most sites, two of which are in the channel modified reach in the upper mainstem and the other two in the Wetland Research riffle impoundment and downstream sites. The results were evaluated against the Ohio EPA temperature criteria for similarly sized streams in the Ohio River drainage basin that include a summer period average and maximum criterion based on a representative assemblage of fish species. The maximum criterion of 31.7°C is slightly more stringent than the Illinois General Use temperature standard of 32.2°C that applies between April-November. Temperatures declined slightly at site 13-2 (RM 96.82) downstream from the NSWRD Gurnee WRF outfall and declined sharply downstream from the NSWRD Gurnee WRF outfall at site 13-1. Temperatures increased downstream at sites 16-6 (RM 94.20) to 16-4 (RM 80.0) and remained at those levels through the reminder of the mainstem. Median values in the grab sample data ranged from 16.7°C at site 16-1 (RM 94.2) to 23.5°C at site 13-5 (RM 106.6; Table 12). Continuous short-term temperatures in Mill and North Mill Creeks ranged from a low of 20.5°C at site 10-1 (RM 1.10) in North Mill Creek to 26.5°C at site 11-2 (RM 11.3). Median grab sample temperatures were lower ranging from 16.4°C to 19.7°C in North Mill Creek and 17.8°C in Mill Creek (Table 12).

Long-term Temperature Analysis

An analysis of long term temperature data from the three permanent Datasondes deployed by DRWW was conducted over the summer-early fall period for the years 2020, 2021, and 2022. The DRWW site 13-6 consistently had the highest temperature values, especially the mean and maximum temperatures in both the long and short term datasets (Table 13). It was the only site with exceedances of the Ohio maximum and Illinois maximum temperature criteria, although the duration of the exceedances was relatively brief. The plots of the daily minimum, mean, and maximum temperatures showed within season variability that is influenced by flow, exposure to sunlight, and discharges of wastewater (Figures 11 and 12). The long term data revealed exceedances of the two maximum thresholds that were not revealed by either the short term Datasonde nor the grab sampling results. Site 13-6 had exceedances of the 28.9°C Ohio maximum in all years with the longest duration being 9.4% of the hours in 2021, 7.2% in 2020, and 6.9% in 2022. Site 16-4 also had exceedances of 28.9°C, but at much lower frequencies ranging from 0.2% in 2022 to 1.0% in 2020. Site 13-6 had the only exceedances of the Illinois 32.2°C maximum threshold in 2020 (0.7%) and 2021 (0.4%). The highest value of 34C was recorded in early July at 13-6 and the next highest maximum of 33.8°C in 2020. While these values surpass the avoidance thresholds of the several fish species and are higher than the lethal thresholds for sensitive fish species, they were of brief duration and offset by cooler temperatures throughout most of the summer-early fall periods. None of the long term average temperatures approached the Ohio average threshold of 27.8°C. Similar to D.O., the legacy hydrological and habitat modifications at site 13-6 were apparent in the temperature data with the highest values occurring during periods of low flow and increased retention time in that reach of the upper mainstem. While not the most limiting factor when compared to the very low D.O. levels, such temperatures provide for short term periods of stress and would become a barrier to recovery if the other and currently more severe stressors were resolved.

Table 12. Mean and median values for 11 selected chemical/physical water quality parameters at 20 sites in the Year 5 Upper Des Plaines River study area in 2022. NE Illinois IPS thresholds are listed at the bottom of the table and the results are color coded accordingly. The difference between total P and ortho P is reported with differences >0.10 yellow highlighted.

			Nitro	ogen,					Sol	uble																
			Amn	nonia	Total I	Nitrates			Rea	ctive			Sest	onic			То	tal								
		Drainage	(as	5 N)	(as N	itrate+	Phosp	horus,	Phosph	orus (as	Total F	9 minus	Chloro	phyll a	Nitr	ogen,	Suspe	ended	Chlo	oride	Condu	uctivity	Tempe	rature		
	River	Area (sq.	m	g/L	Nitr	ite-N)	Total	(as P)	PC	D ₄)	Ort	ho P	μg	r/L	Kjelda	hl, Total	So	ids	m	g/L	μS	/cm	(Fie	eld)	pH (I	Field)
Site ID	Mile	mi.)	Mean	Median	Mean	Median	Mean	Median	Mean	Median	Mean	Median	Mean	Median	Mean	Median	Mean	Median	Mean	Median	Mean	Median	Mean	Median	Mean	Median
	r	T									Des	Plaines	River M	ainsten	1			-	1			1				_
13-6	109.3	123.7	ND	ND	0.54	0.06	0.175	0.097	0.072	0.057	0.103	0.041	12.8	8.8	0.92	0.93	25.9	29.7	221.0	221.0	1088	1047	22.9	23.2	7.63	7.72
13-5	106.6	137.3	ND	ND	0.14	0.06	0.089	0.092	0.033	0.031	0.056	0.061	33.3	27.0	0.73	0.71	31.7	36.5	198.0	198.0	906	889	23.5	23.7	7.54	7.51
13-4	102.9	145.6	0.101	ND	0.41	0.05	0.087	0.088	0.033	0.032	0.054	0.057	64.8	58.5	1.04	1.03	31.9	25.8	189.0	189.0	1002	957	21.8	22.8	7.90	7.90
13-18	99.7	212.9	0.116	ND	0.60	0.12	0.069	0.070	0.021	0.022	0.048	0.048	29.5	29.0	1.28	1.12	24.9	26.0	221.5	221.5	1003	1013	18.2	22.8	7.88	7.79
13-19	99.3	213.2	0.114	ND	0.77	0.66	0.077	0.073	0.034	0.030	0.043	0.043	23.3	24.0	1.10	1.13	22.1	24.0	222.0	222.0	1005	1019	18.1	22.9	7.70	7.74
13-3	98.7	220.3	0.126	0.113	0.54	0.16	0.086	0.086	0.040	0.038	0.046	0.048	22.2	23.0	1.25	1.31	22.6	26.0	234.0	234.0	1106	1060	16.6	20.0	7.72	7.72
13-2	96.8	225.4	0.101	ND	7.46	3.68	0.256	0.260	0.191	0.197	0.065	0.063	14.9	14.0	1.07	1.14	20.6	19.0	217.0	217.0	1033	966	16.8	20.9	7.70	7.66
13-1	94.2	232.0	0.105	ND	9.44	5.84	0.326	0.331	0.250	0.240	0.076	0.091	8.5	8.5	1.22	1.26	18.2	16.5	250.0	250.0	1088	1032	16.8	21.2	7.60	7.59
13-16	90.6	253.8	0.154	ND	9.69	7.07	0.324	0.302	0.259	0.240	0.064	0.062	-	-	1.08	1.14	17.7	11.0	255.5	255.5	1088	1047	16.6	20.7	7.63	7.72
16-6	87.1	261.4	0.109	ND	9.13	6.11	0.271	0.276	0.213	0.210	0.058	0.066	4.0	3.2	0.91	0.92	14.8	9.3	232.5	232.5	1025	1052	18.1	21.0	7.69	7.74
16-7	84.6	266.5	0.117	ND	8.99	6.37	0.310	0.323	0.242	0.250	0.068	0.073	9.3	8.5	1.01	1.04	9.9	6.4	238.0	238.0	1110	1077	18.4	20.2	7.85	7.79
16-5	83.6	268.1	0.116	ND	6.21	5.46	0.303	0.307	0.237	0.250	0.066	0.057	7.1	8.0	0.97	0.95	15.3	5.0	260.5	260.5	1132	1072	17.6	20.3	7.75	7.73
16-8	82.9	268.9	0.100	ND	8.51	6.88	0.235	0.223	0.175	0.170	0.060	0.053	-	-	0.97	1.02	11.2	7.0	268.0	268.0	1085	1074	17.4	19.4	7.68	7.70
16-4	80.0	273.2	0.115	ND	7.94	5.77	0.293	0.306	0.230	0.250	0.062	0.056	5.4	5.6	1.01	0.97	22.5	21.2	230.0	230.0	1097	1069	17.7	20.6	7.75	7.74
16-3	76.7	314.7	0.114	ND	6.09	4.26	0.266	0.261	0.209	0.190	0.057	0.071	5.1	5.4	0.87	0.80	59.5	26.8	224.5	224.5	1054	1050	16.9	21.0	7.72	7.66
16-2	75.4	324.0	0.125	0.104	5.72	3.94	0.265	0.260	0.208	0.200	0.057	0.060	5.8	4.9	0.93	1.01	16.3	13.0	237.0	237.0	1075	1053	16.8	20.7	7.62	7.62
16-1	71.7	358.7	0.173	0.102	4.93	2.72	0.262	0.209	0.210	0.175	0.052	0.035	6.7	6.9	0.95	1.05	25.5	20.0	350.5	350.5	1147	977	16.7	21.3	7.72	7.72
												Mi	ll Creek					-								
11-2	1.7	62.3	0.137	0.115	0.91	0.76	0.134	0.145	0.115	0.065	0.019	0.080	29.9	21.5	1.28	1.26	27.6	24.8	218.5	218.5	977	933	17.8	21.5	8.06	7.90
												North	Mill Cre	ek												
10-7	11.3	19.2	0.152	ND	0.28	0.34	0.051	0.045	0.014	0.012	0.036	0.033	-	-	1.03	0.93	41.0	26.0	264.0	264.0	1114	1075	16.4	18.3	7.86	7.87
10-1	1.1	31.9	0.128	ND	1.77	1.84	0.525	0.609	0.434	0.520	0.091	0.089	7.6	6.3	1.35	1.20	12.0	11.5	142.0	142.0	852	857	19.7	20.3	8.02	7.98
		Excellent	< 0.084	< 0.084	<u><</u> 3.77	<u><</u> 3.77	<u><</u> 0.106	<u><</u> 0.106	<0.050	<0.050	<0.050	<0.050	<2.5	<2.5	<1.07	<1.07	<u><</u> 17.5	<u><</u> 17.5	<40.0	<40.0	<739	<739				
Condition	Category	Good	<0.100	<0.100	<5.05	<5.05	<0.277	<0.277	<0.100	<0.100	<0.100	<0.100	<5.1	<5.1	<1.12	<1.12	>17.5	>17.5	<120.0	<120.0	<1038	<1038				
Thres	•••	Fair	<0.190	< 0.190	<7.34	<7.34	<1.020	<1.020	>0.100	>0.100	>0.100	>0.100	<13.8	<13.8	<1.63	<1.63	>31.6	>31.6	<184.9	<184.9	<1208	<1208				
		Poor Von Poor	<0.280 >0.280	<0.280	< 9.64	<9.64	<1.730	<1.730	>0.250	>0.250	>0.250	>0.250	<28.9	<28.9	<2.14 >2.14	<2.14	>35.2	>35.2	<249.8	<249.8	<1378	<1378				
	Source	Very Poor	-	<u>></u> 0.280 PS	<u>></u> 9.64	<u>></u> 9.64 PS	<u>></u> 1.730 IP	<u>></u> 1.730 S		>0.500 BI	>0.500	>0.500 IBI	>28.9 MBI/	>28.9 NSAC		<u>></u> 2.14 PS	>38.7 IF	>38.7 PS	_	<u>></u> 249.8 PS	<u>>1378</u>	<u>>1378</u> PS				
								-										-								

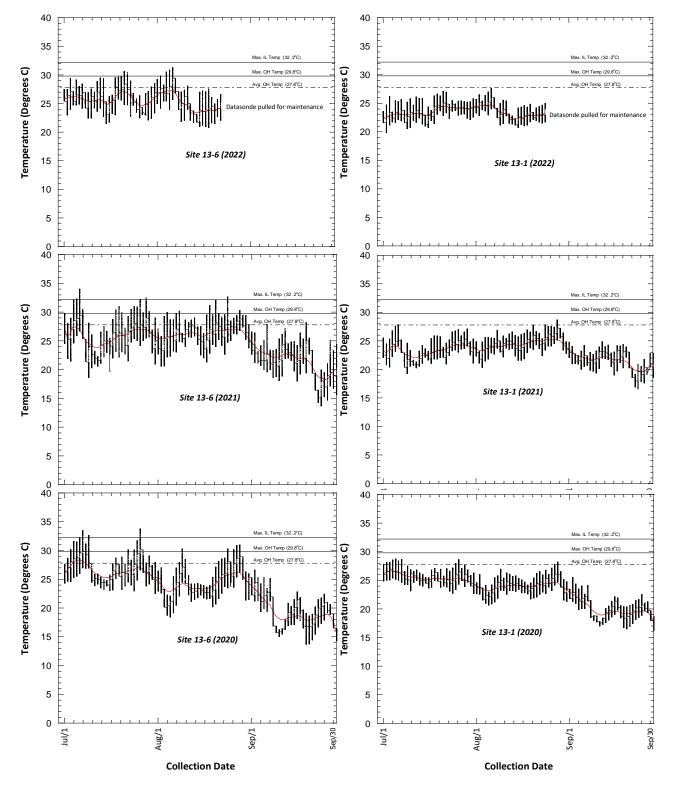
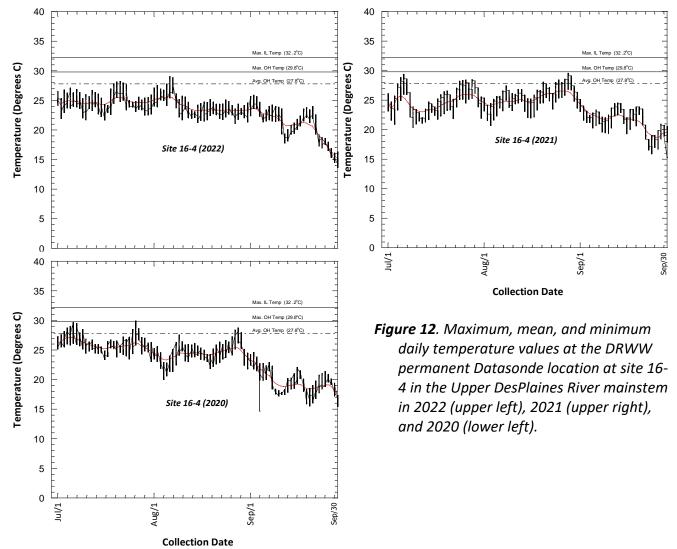

43 | Page

Table 13. Results of the analysis of long term Datasonde temperature data during July 1-September 30 at the three permanent DRWW sites 13-6, 13-1, and 16-4. The long term temperature statistics include the minimum, mean, maximum and % hours >28.9 ℃ and >32.2 ℃. The short-term intervals from 2020 and 2022 are shown for comparison. Yellow highlighted values are the highest values between the three sites.


						Long-term Interval T (°C) Summary Statistics							
									% Hours	% Hours			
	River			Earliest	Latest	Min. T	Mean T	Max. T	>28.9	>32.2			
Site ID	Mile	Days	Hours	Date	Date	(°C)	(°C)	(°C)	(°C)	(°C)			
					202	22							
13-6	109.3	53	1247	16-Jun	15-Sep	20.8	25.5	31.3	6.9	0.0			
13-1	94.2	55	1311	16-Jun	15-Sep	19.9	23.5	27.6	0.0	0.0			
16-4	80.0	92	2199	16-Jun	15-Sep	13.7	23.1	29.1	0.2	0.0			
		_			202	21			-				
13-6	109.3	92	2194	16-Jun	15-Sep	13.7	24.5	34.0	9.4	0.4			
13-1	94.2	92	2171	16-Jun	15-Sep	16.6	23.1	28.7	0.0	0.0			
16-4	80.0	92	2176	16-Jun	15-Sep	15.3	23.8	29.6	0.8	0.0			
		-			202	20							
13-6	109.3	92	2206	16-Jun	15-Sep	13.7	23.4	33.8	7.2	0.7			
13-1	94.2	92	2204	16-Jun	15-Sep	15.7	23.2	28.8	0.0	0.0			
16-4	80.0	92	2307	16-Jun	15-Sep	14.7	23.4	29.9	1.0	0.0			
						Short-	term Interv	val T (°C) Si	ummary St	atistics			
									% Hours	% Hours			
	River			Earliest	Latest	Min. T	Mean T	Max. T	>28.9	>32.2			
Site ID	Mile	Days	Hours	Date	Date	(°C)	(°C)	(°C)	(°C)	(°C)			
					202	22							
13-6	109.3	4	96	18-Jul	21-Jul	20.8	23.8	27.6	0.0	0.0			
13-1	94.2	4	96	18-Jul	21-Jul	21.2	22.9	24.8	0.0	0.0			
16-4	80.0	6	144	22-Jul	27-Jul	21.1	23.5	25.1	0.0	0.0			
					202	20							
13-6	109.3	4	96	24-Aug	27-Aug	23.5	27.0	30.9	26.0	0.0			
13-1	94.2	4	96	21-Aug	24-Aug	22.1	24.3	26.8	0.0	0.0			
16-4	80.0	4	96	21-Aug	24-Aug	22.6	24.7	26.6	0.0	0.0			

рН

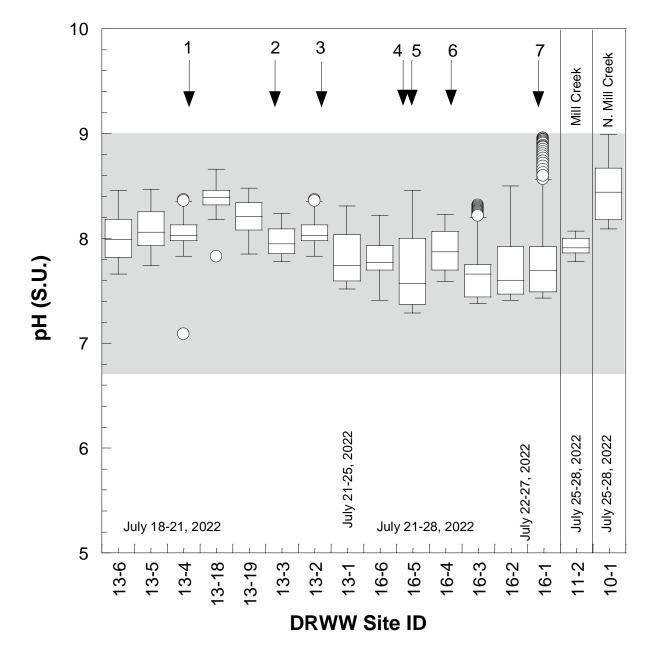

pH reflects the degree to which a fluid is acidic or basic with 7.0 S.U. being neutral. Excessive nutrient enrichment can indirectly affect pH levels via increased algal activity and the associated photosynthesis and respiration. The natural cycle of photosynthesis during daytime and respiration during nighttime can be exaggerated leading to an increase in the diel flux of pH levels similar to how it affects D.O. (Zheng and Paul 2009). The pH values in the Upper Des Plaines River survey area were recorded via grab samples at 20 locations during the summerfall index period and continuously using Datasonde units that were deployed for 4-5 days during mid-late July 2022. The latter was done at 14 sites in addition to the three (3) units that

Figure 11. Maximum, mean, and minimum daily temperature values at DRWW permanent Datasonde locations at sites 13-6 and 13-1 in the Upper DesPlaines River mainstem in 2022 (upper), 2021 (middle), and 2020 (lower).

were continuously operated by DRWW beginning in June 2020. Median pH levels were >8.0 S.U. between 13-6 (RM 109.3) and 13-2 (RM 96.8) with ranges of 0.4-0.6 S.U. around the median. All sites downstream beginning at site 13-1 (RM 94.2) had median values of 7.5-7.9 S.U. with wider margins between maximum and minimum values and the widest diel swing observed at site 16-1 with numerous outliers above the statistical maximum of 8.5 S.U. reaching 9.0 S.U. (Figure 13). The highest recorded maximum value was observed at site 13-18 in the Wetlands Research impoundment. The site in Mill Creek (11-2) had the most compressed range of pH values of 7.8-8.1 S.U. most likely due to the ameliorating effects of the LCDPW Mill Creek WWTP effluent. The North Fork at site 10-1 had the highest median value of 8.5 S.U. and a wide range of 8.2-9.0 S.U. The median pH values from the grab sample results ranged from 7.5-7.9 in the mainstem with the highest value occurring downstream from the Wetlands Research riffle (13-18). in the North Fork of Mill Creek at site 10-1 (RM 1.1) near the mouth (Table 10). Mill Creek (11-2) and North Mill Creek ay 10-1 had median values of 8.06 and 8.02 S.U. Taken together, the continuous results at all except site 16-1 reflected only slight to moderate effects from nutrient enrichment on pH.

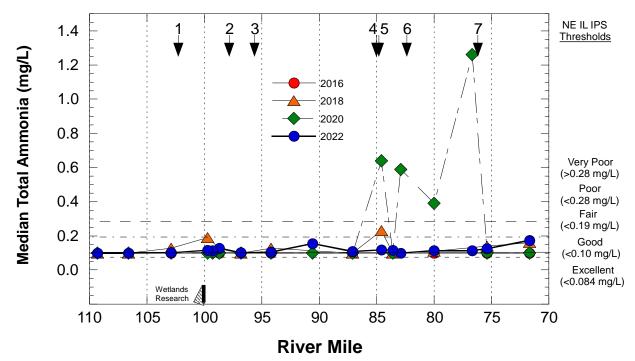


Figure 13. pH values measured continuously by Datasondes deployed for 3-4 day periods during mid-late July 2022 at 17 locations. Box-and-whisker plots show the minimum, maximum, 25th and 75th percentiles, median, and outlier (>2 interquartile ranges from the median) values. The shaded area is the range of the Illinois pH standard of 6.5-9.0 S.U. The key to major point sources (arrows and numbers) appears in Figure 5.

Ammonia-Nitrogen (N)

Levels of ammonia-N have either been below or just above the mean detection level (MDL) in all prior survey years since 2016 with no values that would suggest significant chronic or acutely toxic effects to aquatic life during those surveys. Median values in 2022 were detected only five

sites with means more frequently detected, but no more than 0.073 mg/L above the MDL (Figure 14; Table 10). Concentrations of ammonia-N in 2022 were below detection levels from the upstream most site (13-16) downstream to site 16-6 just upstream from the Libertyville WWTP. Downstream from this point median values ranged from poor and very poor at sites 16-7 (RM 84.6), 16-8 (RM 82.9), and 16-3 (RM 76.7) and fair at site 16-4 (RM 80.0). The Mundelein and Libertyville WWTP outfalls are upstream from site 16-7, potentially indicating wastewater as the source of the elevated ammonia-N concentrations at sites 16-7 and 16-8. Indian Creek enters the Des Plaines River upstream from site 16-3 which had the highest median of 0.33 mg/L and maximum value of 1.25 mg/L. DRWW recorded a total ammonia-N value of 3.34 mg/L in Indian Creek at site 15-9 on August 27, 2020 with higher values being recorded in prior years. However, this site is more than 10 miles upstream from the confluence with the mainstem so it is doubtful that these values are related to the elevated mean and maximum values observed at site 16-3 in 2020. Ammonia-N levels were low in Mill Creek were below the MDL at 10-1 and 0.141 mg/L at 10-7. Mean values were also low at 0.152 mg/L and 0.128 mg/L (Table 10).

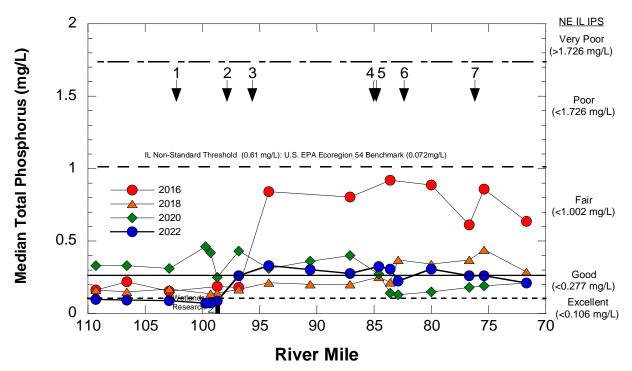


Figure 14. Concentrations of median ammonia-N in the upper Des Plaines River mainstem during June-October 2016-2022. Dashed and solid lines represent IPS derived effect thresholds correlated with ranges of biological quality and as listed in Table 7. A key to sources (arrows and numbers) is in Figure 5.

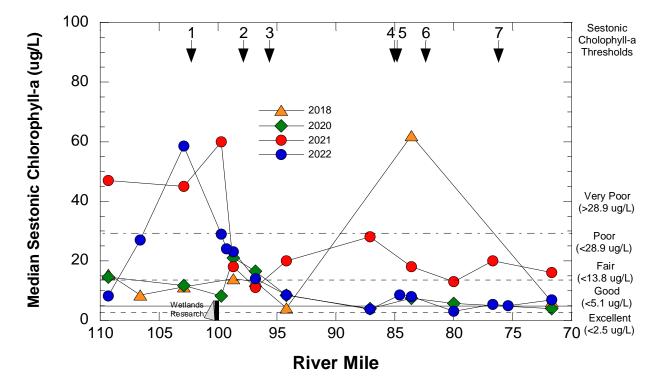
Total and Dissolved Phosphorus

Median total phosphorus levels based on grab samples in the mainstem ranged from good to fair IPS thresholds in all years 2016-2020. Median total P values in 2022 reflected a similar pattern to the values observed in 2020 except for lower values in the upper mainstem (Figure 15). The pattern downstream from the Wetlands Research riffle was similar between 2018,

2020, and 2022 and well below the higher values in 2016. Median total P values in the highly modified section of the upper Des Plaines mainstem were in the excellent range downstream to site 16-7. The median declined into the good range downstream from Libertyville where it remained downstream to site 13-3. The longitudinal pattern that was indicative of wastewater treatment plant inputs in 2016 has not been observed since and corresponds to an substantial reduction in point source total P loadings over that period. Median total phosphorus levels ranged from good to excellent in Mill Creek (11-2) and North Mill Creek (10-7), but were highly elevated at 0.525 mg/L in North Mill Creek at site 10-1 (Table 10).

Figure 15. Concentrations of median total phosphorus in the upper Des Plaines River mainstem during June-October 2016-2022. Dashed and solid lines represent IPS derived effect thresholds correlated with ranges of biological quality and as listed in Table 7. A key to sources (arrows and numbers) is in Figure 5.

The dissolved form of inorganic phosphorus was also measured as orthophosphate in 2022 which was compared to the total P results (Table 10). Dissolved phosphorus was analyzed for the first time in 2020 in support of NARP development for the upper Des Plaines mainstem POTWs. Median dissolved P generally tracked total P along the longitudinal continuum, but the difference between total and dissolved was greater upstream from the effluent dominated portion of the mainstem at most sites downstream from the NSWRD Waukegan WRF. This is an indication of the fraction of total P as dissolved P between nonpoint and point sources, the fraction as dissolved being higher with the latter in the mainstem. The Mill Creek and North Mill Creek dissolved P levels reflected nonpoint source inputs. The 2022 results are also reported as median values in Table 10 along with the difference of 0.100 mg/L as a benchmark, the difference was <0.100 mg/L at site 13-6 (RM 109.3) only. The remaining sites were a difference


of 0.043-0.076 mg/L. IN 2020 the differences were greatest in the upper mainstem between sites 13-6 (RM 109.3) and 13-19 (RM 99.72) which includes the channel and flow modified reach of the mainstem. The difference suggests that the fraction of total P that is readily available is lower than in the downstream effluent dominated reach of the mainstem. A difference >0.100 mg/L was also observed at 0.158 mg/L in the North Fork Mill Creek at site 10-1 (RM 1.10) in 2020, but was 0.091 mg/L in 2022. The role of total P (and other indicators) as a contributor to overall nutrient enrichment effects was evaluated as part of the modified SNAP procedure (Ohio EPA 2015b) discussed later.

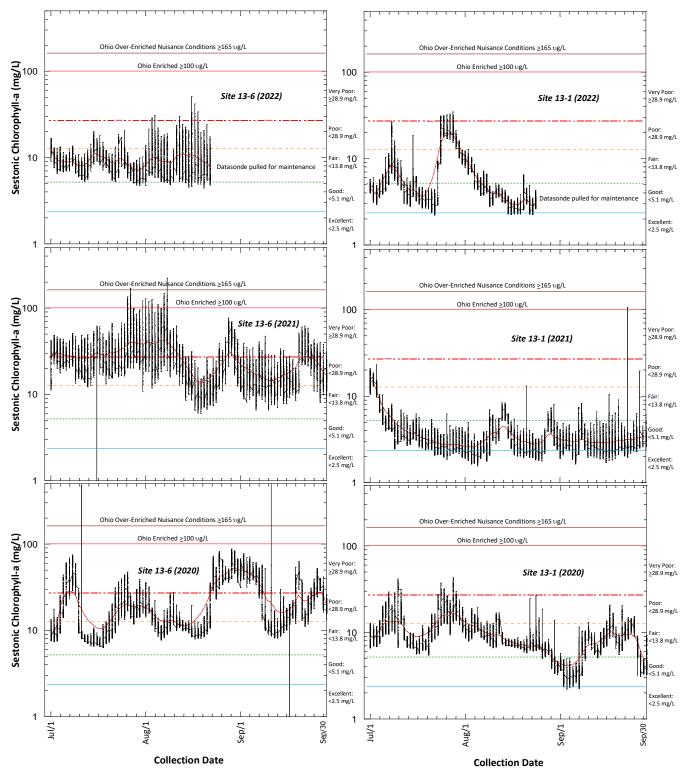
Sestonic Chlorophyll a

Chlorophyll allows photosynthesis in plants (including algae) by using sunlight energy to convert simple molecules into organic compounds under aerobic conditions. Chlorophyll a is the predominant type of chlorophyll found in green plants and algae. Sestonic chlorophyll a is measured as biomass per unit volume in $\mu g/L$ and benthic chlorophyll a is measured as biomass per unit area in mg/m^2 . In flowing waterbodies the relationship between nutrient enrichment and chlorophyll a levels is complex. The poor relationship between the concentration of primary nutrients such as phosphorus and nuisance levels of chlorophyll a is due in part to the delay in algae being able to utilize nutrients to produce excessive chlorophyll a biomass (Miltner 2018). As a result, algal biomass as measured by chlorophyll a will increase with distance downstream from a nutrient source with factors such as flow volume, velocity, retention time and the variability of how each factor influences this dynamic. Chlorophyll a levels can vary widely within and between seasons and years again depending on factors such as the flow regime, retention time, and temperature in addition to nutrient loadings and their availability to spur algal growth. The water quality impacts of excessive algal biomass as measured by chlorophyll include a widened "swing" in the diel D.O. cycle, aesthetic impacts, and human health risks when toxic forms of algae are present. The principal emphasis in the 2022 survey is on aquatic life impacts due to modifications to the D.O. regime. However, indicators of cultural eutrophication were evaluated as well and include an enhanced version of the IEPA Risk of Eutrophication. Chlorophyll a was sampled as both sestonic and benthic forms in 2022. Sestonic chlorophyll a was collected as part of the grab water sampling during June-October and benthic chlorophyll a was collected during the short-term deployment of the Datasonde monitors at 17 locations.

Sestonic Chlorophyll a in Grab Samples

Median sestonic chlorophyll a biomass in grab samples in 2018, 2020, 2021, and 2022 appear in Figure 16 with both median and mean values in Table 10. The highest levels of mean sestonic chlorophyll a occurred mostly in the upper mainstem in 2021 and 2022 and then declining downstream from the two largest major wastewater treatment discharges, the NSWRD Gurnee and Waukegan WRFs (Figure 16, Table 10). The 2020 values were even and below 10-20 μ g/L throughout the mainstem. Fewer sites were sampled in 2018 and the same pattern as 2020 with the exception of a single median value of 65 μ g/L at site 16-5 (RM 83.6) in 2018. The high values in 2021 and 2022 are in the channel and flow modified upper reach that exhibits multiple indications of the effects of excessive nutrient enrichment.

Figure 16. Concentrations of median sestonic chlorophyll a in the upper Des Plaines River mainstem during June-October 2018-2022. Dashed and solid lines represent various effect thresholds. A key to sources (arrows and numbers) is in Figure 5.


Long-Term Sestonic Chlorophyll a Analysis

An analysis of long term sestonic chlorophyll a data from the three permanent Datasondes deployed by DRWW was conducted over the summer-early fall period for the years 2020, 2021, and 2022 the same as for D.O. and temperature. The statistics for minimum, mean, and maximum values and exceedance durations for the excellent to very poor thresholds and an extreme over-enrichment threshold were developed for a long term period of July 1-September 30 and a short-term period that is used in the SNAP analysis (Table 14). The upstream Datasonde at site 13-6 (RM 109.3) consistently and with few exceptions showed the highest and longest lasting exceedances of elevated values indicative of chronic nutrient enrichment. The long term data revealed two extremely high maximum values 658.4 µg/L and 221.0 µg/L in 2020 and 2021 at site 13-6 that exceeded the Ohio nuisance threshold of 165 μ g/L (Miltner 2018). Another extreme outlier of 237.6 µg/L was measured at site 16-4 in 2022. Minimum and mean values were highest at 13-6 with means in 2020 and 2021 being higher by a wide margin over the other two sites. The wide difference between the mean and maximum values and visually in Figures 17 and 18 demonstrate the high variability across a season in a particular year. The daily variability at site 13-6 was not unlike the diel fluctuations in D.O. especially during low flow years like 2021. The results at 13-6 in 2020 was almost cyclical and likely related to the spates of low level increases in flow that suppressed algal activity. The results at sites 13-1 and 16-4 were consistently lower, but each had a few short term extreme maximums.

Table 14. Results of the analysis of long term Datasonde sestonic chlorophyll a data during July 1-September 30 at the three permanent DRWW sites 13-6, 13-1, and 16-4. The long term statistics include the minimum, mean, maximum and % hours less than the excellent, good, fair, and poor thresholds and exceedances of the very poor and over-enriched thresholds. The short-term intervals from 2020 and 2022 are shown for comparison. Yellow highlighted values are the highest values between the three sites.

					Long-term Interval Sestonic Chlorophyll a Summary Statistics									
Site	River			Earliest	Latest	Min. Chla	Mean Chla	Max. Chla	% Hours <2.5	<5.1	<13.8	<28.9	% Hours Max. >28.9	Max. >100
ID	Mile	Days	Hours	Date	Date	(µg/L)	(μg/L) 202	(µg/L) 22	μg/L	μg/L	μg/L	μg/L	μg/L	µg/L
13-6	109.3	53	1247	1-Jul	30-Sep	4.4	9.3	51.2	0.0	0.8	90.6	99.8	0.2	0.0
13-1	94.2	55	1311	1-Jul	30-Sep	2.2	6.7	34.8	4.1	62.0	88.8	99.2	0.8	0.0
16-4	80.0	92	2199	1-Jul	30-Sep	1.8	4.3	237.6	13.2	77.0	99.4	99.9	0.1	0.1
							202	21						
13-6	109.3	92	2194	1-Jul	30-Sep	6.0	26.0	222.1	0.0	0.0	20.0	67.4	32.5	0.4
13-1	94.2	92	2171	1-Jul	30-Sep	1.6	3.7	105.8	25.0	87.1	98.4	100.0	0.0	0.0
16-4	80.0	92	2175	1-Jul	30-Sep	1.8	3.3	41.0	18.2	96.4	98.5	100.0	0.0	0.0
							202	20						
13-6	109.3	92	2206	1-Jul	30-Sep	6.3	22.6	658.4	0.0	0.0	44.1	72.8	27.2	0.0
13-1	94.2	92	2204	1-Jul	30-Sep	2.2	9.3	43.3	0.5	13.5	87.0	99.2	0.8	0.0
16-4	80.0	88	2087	1-Jul	30-Sep	0.1	9.0	393.3	12.9	36.8	80.6	97.6	2.3	0.0
							Short-te	erm Inter	val Sestor	ic Chloro	phyll a Su	ummary S	tatistics	
						Min.	Mean	Max.	% Hours	% Hours	% Hours	% Hours	% Hours Max.	% Hours Max.
Site	River			Earliest	Latest	Chla	Chla	Chla	<2.5	<5.1	<13.8	<28.9	>28.9	>100
ID	Mile	Days	Hours	Date	Date	(µg/L)	(µg/L)	(µg/L)	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
							202							
13-6	109.3	4	96	18-Jul	21-Jul	4.4	9.2	33.8	0.0	2.1	91.1	99.7	0.3	0.0
13-1	94.2	4	96	18-Jul	21-Jul	2.3	3.3	6.5	14.6	93.8	100.0	100.0	0.0	0.0
16-4	80.0	6	144	22-Jul	27-Jul	2.1	2.7	4.3	29.5	100.0	100.0	100.0	0.0	0.0
							202							
13-6	109.3	4	96	24-Aug	27-Aug	23.1	45.1	82.3	0.0	0.0	0.0	10.9	89.1	0.0
13-1	94.2	4	96	21-Aug	24-Aug	5.8	7.2	26.6	0.0	0.0	99.5	100.0	0.0	0.0
16-4	80.0	4	96	21-Aug	24-Aug	1.9	5.2	16.4	2.6	57.0	99.7	100.0	0.0	0.0

The difference between the long term and short term statistics for 2022 and 2020 were evident in the relatively low maximum values, high minimum values, and the high percentage of hours >28.9 μ g/L in 2020 at site 13-6. Agreement occurred for the means and that 13-6 exhibited the highest sustained sestonic chlorophyll a levels compared to the other two sites. The short-term data was used on the SNAP analysis discussed later.

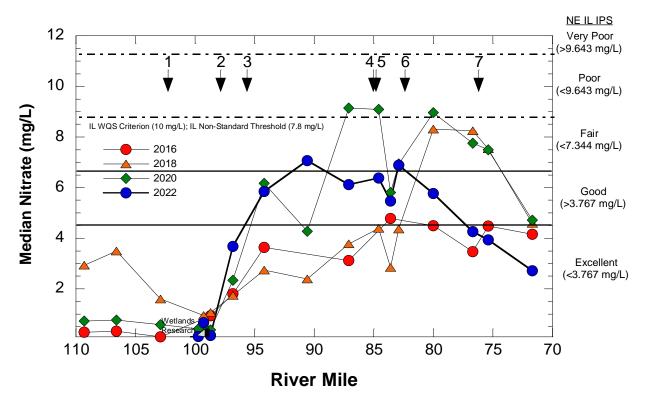


Figure 17. Maximum, mean, and minimum daily sestonic chlorophyll a values at DRWW permanent Datasonde locations at sites 13-6 and 13-1 in the Upper DesPlaines River mainstem in 2022 (upper), 2021 (middle), and 2020 (lower).

Total Nitrate-N (NO₃-N)

Median total nitrate-N concentrations were very low ranging from 0.210-0.072 mg/L in the upper mainstem downstream to site 13-2 (RM 96.82) located just downstream from the NSWRD Waukegan WRF (Figure 19; Table 10). Both median and mean concentrations increased sharply downstream from this point and then declined steadily between sites 16-8 (RM 82.9) and 16-1 (RM 71.7) where the median and mean values returned to excellent and good. The longitudinal pattern reflects the nitrate-N loadings from the largest wastewater treatment facilities which by far dominate effluent mass loadings although there has been a 16.1% reduction since 2016. The trend has been similar in each year except 2016 when upstream values were >1.00 up to 3.50 mg/L. Values were in the excellent range of the IPS thresholds at and upstream from site 13-2. The median value in 2022 at site 13-1 (RM 94.2) downstream from the NSWRD Gurnee WRF increased into the good and fair ranges. The highest median value of 7.07 mg/L in the poor range occurred at site 13-16 (RM 90.6) and was accompanied by the highest and very poor mean value of 9.69 mg/L (Table 10), an indication of variability between individual results at the same location. Mean values remained elevated in the poor range downstream to 16-4 (RM 80.0) after which both the median and mean both declined The longitudinal pattern was similar to the 2016 and 2018 results except with higher median nitrate-N concentrations in the lower mainstem in 2020. Median total nitrate-N concentrations

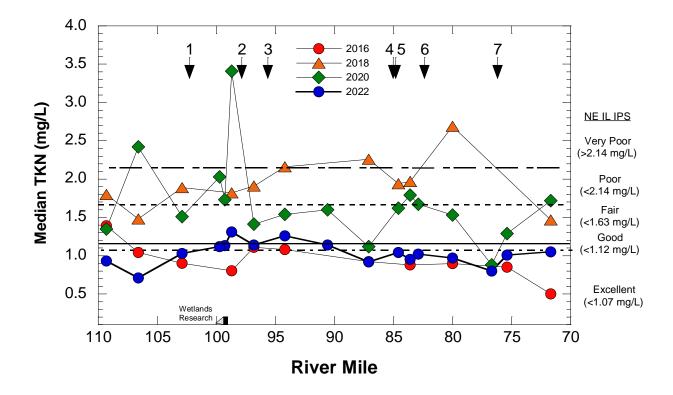


Figure 19. Concentrations (mg/L) of median nitrate-N in the upper Des Plaines River mainstem during June-October 2016-2022. Dashed and solid lines represent IPS derived effect thresholds correlated with ranges of biological quality and as listed in Table 7. A key to sources (arrows and numbers) is in Figure 5.

in the Mill Creek and North Mill Creek sites were in the excellent or good range at each location (Table 10). The role of nitrate-N (and other indicators) as a contributor to overall nutrient enrichment effects was evaluated as part of the modified SNAP procedure (Ohio EPA 2015b) discussed later.

Total Kjeldahl Nitrogen (TKN)

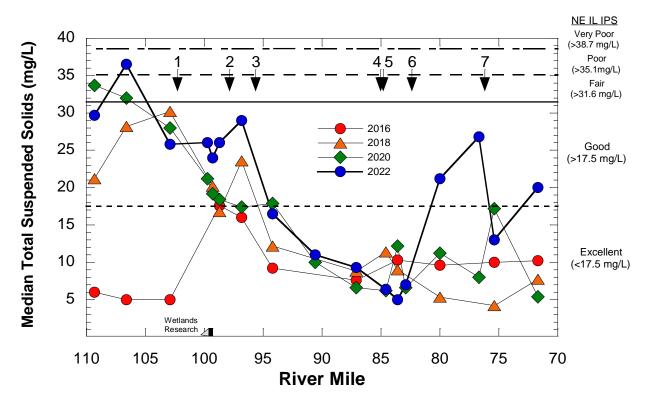

Organic nitrogen as measured by Total Kjeldahl Nitrogen (TKN), an indicator of the living or recently dead fraction of sestonic algae, is an informative indicator of nutrient enrichment. While TKN is not a direct effect parameter, it is indicative of the effects of organic enrichment by nitrogenous biomass. Median TKN values in 2022 were mostly in the good range (Figure 20). In 2020 TKN ranged from mostly fair to poor at three mainstem sites. There was little variation between the mean and median values in 2022 (Table 10). Overall, median concentrations of TKN were generally lower than in 2018 and 2020, particularly in the wastewater effluent dominated reaches of the mainstem. The longitudinal pattern in the 2022 resembled 2016 and both years had extended periods of low flows. TKN values at the Mill Creek were elevated into the fair range while and North Mill Creek had an excellent value upstream at site 10-7 and a fair value at the downstream site 10-1 (Table 10). The role of TKN (and other indicators) as a contributor to overall nutrient enrichment effects was evaluated as part of the modified SNAP procedure.

Figure 20. Concentrations (mg/L) of median total Kjeldahl nitrogen (TKN) in the upper Des Plaines River mainstem during June-October 2016-22. Dashed and solid lines represent IPS derived effect thresholds correlated with ranges of biological quality and as listed in Table 7. A key to sources (arrows and numbers) is in Figure 5.

Total Suspended Solids (TSS)

Total suspended solids (TSS) can reflect either inorganic suspended sediment and/or organic matter in the form of sestonic algae and other organic debris. Median concentrations of TSS ranged from poor in the highly modified section of the survey area to excellent downstream of the Wetland Research riffle with a steep decline in values between those two sites in 2022 (Figure 21). The longitudinal pattern matches that observed in 2018 and 2020 and suggests that the input of treated wastewater generally coincided with decreased concentrations of TSS in the effluent dominated reach of the Des Plaines River. A spike in TSS comparable to the upstream values occurred in the lower reach at sites (16-4 (RM 80.0) and 16-3 (RM 76.7) downstream from the LCDPW New Century Town WWTP. An exceedance of the fair threshold occurred at site 11-2 (RM 1.71) in Mill Creek. North Mill Creek had a fair median, but poor mean at site 10-7 while site 10-1 had excellent levels of TSS (Table 10). The relationship between the mean and median TSS values was largely comparable except at two sites (16-3 and 10-7) that had means in the very poor range and medina values in the fair range. The role of TSS (and other indicators) as a contributor to overall nutrient enrichment effects was evaluated as part of the modified SNAP procedure (Ohio EPA 2015b).

Figure 21. Concentrations (mg/L) of median total suspended solids (TSS) in the upper Des Plaines River mainstem during June-October 2016-2022. Dashed and solid lines represent IPS derived effect thresholds correlated with ranges of biological quality and as listed in Table 7. A key to sources (arrows and numbers) is in Figure 5.

Nutrient Effects Assessment

The impact of nutrients on aquatic life has been well documented (e.g., Allan 2004), but the derivation of criteria and their form and application are only just now emerging. Because of the widely varying efforts to develop nutrient criteria by the States, conflicting U.S. EPA oversight, and the potential cost of additional nutrient controls it has been a controversial issue (Evans-White et al. 2014). Unlike toxicants, the influence of nutrients on aquatic life is indirect and primarily via their influence on algal photosynthesis and respiration and the resulting increased magnitude of diel D.O. swings and by the oxygen demand exerted by algal decomposition. Nutrients can also affect food sources for macroinvertebrates and fish and the response of aquatic life to elevated nutrients is co-influenced by habitat (e.g., substrate composition), stream flow (e.g., scouring and dilution), temperature, and exposure of the water column to sunlight. Illinois is the leading state in terms of nitrogen (16.8%) and phosphorus (12.9%) loadings exported via the Illinois and Upper Mississippi Rivers to the Gulf of Mexico where an anoxic zone has developed (U.S. EPA 2008). In Illinois, as in neighboring Midwestern states that drain to the Mississippi River, efforts are underway to modernize nutrient water quality criteria. However, nutrient export is not the only concern - local impacts are also important and the focus of this evaluation is on reach scale effects in the upper Des Plaines

River mainstem. The assessment of nutrient effects on aquatic life was conducted using the modified SNAP procedure and an enhanced version of the IEPA Risk of Eutrophication (ROE) for cultural eutrophication.

The SNAP is a combined assessment that emphasizes indicators of the effects of nutrient enrichment as opposed to the more limited focus on concentrations of primary nutrient parameters. A multiparameter approach modified from the Ohio SNAP methodology (Ohio EPA 2015a) and the newer large rivers methodology (Miltner 2018), and as described in the Methods section, was employed in a progressive manner as has been done previously in other DRWW assessments since 2017. The results are detailed in a matrix that shows the fish and macroinvertebrate IBIs, the QHEI habitat score, the primary nutrient parameters total P and nitrate-N, the secondary parameters TKN and TSS, the maximum and minimum D.O. based on short-term Datasonde deployments, the width of the diel D.O. swing, benthic chlorophyll a (as biomass), and sestonic chlorophyll a. This assessment produces an overall rating of the degree of nutrient enrichment based on the frequency and magnitude of exceedances of thresholds for the aforementioned indicators and parameters expressed as the total SNAP score. This was done with data collected at 16 sites in the 2022 study area (Table 15). The SNAP score is obtained by summing the parameter-specific SNAP scores that are weighted higher for five primary indicators – fIBI, mIBI, diel D.O. swing, minimum D.O., benthic chlorophyll a, and sestonic chlorophyll a, less for three secondary parameters – QHEI, total phosphorus, and maximum D.O., and the least for three tertiary parameters – total nitrate-N, TSS, and TKN. The total SNAP score is normalized to a 0-100 scale with the severity of nutrient enrichment increasing inversely to the total SNAP score (see bottom of Table 15). The overall degree of nutrient enrichment effects are represented by five narrative ratings of Enrichment Status that results from the degree to which each of the nutrient related parameters and SNAP indicators exceeded their respective primary, secondary, and tertiary thresholds. The Highly Enriched and Enriched narratives are assigned when the indicators are exceeded in terms of the number and magnitude of poor and very poor exceedances that are associated with a biological impairment. The Likely Nutrients narrative is assigned when there is a predominance of fair exceedances, but an insufficient number and/or magnitude of poor or very poor exceedances to warrant Enriched status. Hence, it serves as an indication where a threat for adverse effects from nutrient enrichment exists. The Not Nutrients narrative rules out nutrient effects as a cause of impairment and it is always assigned to sites that exhibit full attainment of the General use biocriteria.

Stream Nutrient Assessment Procedure (SNAP) 2022 Results

The SNAP results for 2022 showed that overall nutrient enrichment status was the most serious in the upper mainstem particularly so in the flow and habitat modified reach where the Enriched status was assigned to site 13-6 (RM 109.30) and Highly Enriched to sites 13-5 (RM 106.60) and 13-4 (RM 102.9). Enriched status was assigned at site 13-18 in the Wetland Research impoundment, site 13-3 (RM 98.7), and site 16-1 (RM 71.7) in the mainstem. Enriched was also assigned to site 10-1 (RM 1.1) in North Mill Creek. Four mainstem sites (13-19, 16-5, 16-4), and 16-2). Site 11-2 in Mill Creek was also rated as Likely Nutrients. The remaining four

Table 15. Results of applying a modified Stream Nutrient Assessment Procedure to the 2022 Year 5 Upper Des Plaines River study area. Descriptions of how each result reflects the degree of nutrient enrichment effects and which results in an assignment of overall enrichment status are shown at the bottom of the matrix along with the source of the thresholds for each primary (blue shaded), secondary (green shaded), and tertiary (tan shaded) parameter. The weighted SNAP score for each parameter and the total SNAP score for deriving the overall enrichment status are shown adjacent to each site parameter value. Biological sampling sites that lacked continuous D.O. data were not assigned an overall enrichment status. The enhanced IEPA Risk of Eutrophication (ROE) result is listed alongside the Overall Enrichment Status.

																		Max.												
		Drain-																Diel						Benthic		Sestonic				
		age							AQLU	Mean	Total	Mean	NO₃-	Max.	Max.	Min	Min.	D.O.	Diel	Mean		Mean		Chloro-	BChl	Chloro-	Sest.	Total	Overall	Risk of-
	Rive	er Area		fIBI		mIBI		QHEI	Attainment	ТР	Р	Nitrate	Ν	D.O.	D.O.	D.O.	D.O.	Swing	Swing	TSS	TSS	TKN	ткл	phyll a	а	phyll a	Chla	SNAP	Enrichment	Eutrophica-
Site ID	Mil	le (mi.²)	fIBI	Score	mIBI	Score	QHEI	Score	Status	(mg/L)	Score	(mg/L)	Score	(mg/L)	Score	(mg/L)	Score	(mg/L)	Score	(mg/L)	Score	(mg/L)	Score	(mg/m ³)	Score	(mg/L)	Score	Score	Status	tion
		·													Des Pla	aines Ri	iver													
13-6	109	.3 123.7	30.5	3.0	37.1	3.0	49.00	5.00	NON - Fair	0.18	1.00	0.54	0.00	18.29	2.00	1.72	6.00	11.42	10.00	25.9	0.5	0.92	0.00	11.8	0.0	13.9	7.0	60	Enriched	High Risk
13-5	106	6.6 137.3	26.5	7.0	37.2	3.0	35.80	5.00	NON - Fair	0.09	0.00	0.14	0.00	11.00	1.00	2.59	5.00	6.81	10.00	31.7	1.0	0.74	0.00	18.5	0.0	33.3	10.0	54	Highly Enriched	Very High Risk
13-4	102	.9 145.6	28.0	7.0	32.7	3.0	46.00	5.00	NON - Fair	0.09	0.00	0.41	0.00	8.97	0.00	3.66	5.00	5.08	7.00	31.9	1.0	1.04	0.00	13.9	0.0	64.8	10.0	57	Highly Enriched	Very High Risk
13-18	99.	7 212.9	23.5	7.0	32.3	3.0	38.00	5.00	NON - Fair	0.07	0.00	0.60	0.00	12.69	1.00	5.77	2.00	5.58	7.00	24.9	0.5	1.29	1.00	12.1	0.0	29.5	10.0	60	Enriched	High Risk
13-19	99.	.3 213.2	37.0	3.0	32.3	3.0	74.80	2.00	NON - Fair	0.08	0.00	0.77	0.00	8.49	0.00	3.06	5.00	3.39	1.00	22.1	0.5	1.10	0.50	36.7	1.0	23.3	7.0	75	Likely Nutrients	High Risk
13-3	98.	7 220.3	32.5	3.0	42.1	1.0	72.80	2.00	NON - Part	0.09	0.00	0.54	0.00	10.82	0.50	1.52	6.00	9.30	10.00	22.6	0.5	1.25	1.00	35.9	1.0	22.2	7.0	67	Enriched	High Risk
13-2	96.	.8 225.4	43.5	1.0	46.2	1.0	78.30	1.00	Full	0.26	1.00	7.46	1.50	10.64	0.50	5.55	2.00	4.89	3.00	20.6	0.5	1.07	0.50	36.6	1.0	14.9	7.0	80	Not Nutrients ¹	Risk Present
13-1	94.	.2 232.0	43.0	1.0	54.9	1.0	66.00	2.00	Full	0.33	2.00	9.44	1.50	15.81	1.50	3.37	5.00	8.50	10.00	18.2	0.5	1.22	1.00	51.4	1.0	8.5	3.0	70	Not Nutrients ¹	Very High Risk
16-6	87.	1 261.4	38.0	3.0	69.4	1.0	69.50	2.00	NON - Part	0.27	1.00	9.13	1.50	9.53	0.00	4.14	2.00	4.91	3.00	14.8	0.0	0.91	0.00	44.7	1.0	4.0	1.0	83	Not Nutrients	Risk Present
16-5	83.	.6 268.1	33.0	3.0	48.2	1.0	60.30	2.00	NON - Part	0.30	2.00	6.21	1.00	12.87	1.00	4.17	2.00	7.87	10.00	15.3	0.0	0.97	0.00	47.4	1.0	5.6	3.0	73	Likely Nutrients	High Risk
16-4	80.	.0 273.2	32.5	3.0	65.8	1.0	67.00	2.00	NON - Part	0.29	2.00	7.94	1.50	17.03	2.00	3.69	5.00	3.87	1.00	22.5	0.5	1.01	0.00	36.6	1.0	5.4	3.0	78	Likely Nutrients	No Risk
16-3	76.	.7 314.7	34.5	3.0	48.4	1.0	61.80	2.00	NON - Part	0.27	1.00	6.09	1.00	11.16	0.50	4.52	2.00	3.70	1.00	59.5	2.0	0.87	0.00	16.2	0.0	5.1	1.0	84	Not Nutrients	Risk Present
16-2	75.	.4 324.0	40.5	3.0	61.3	1.0	59.30	2.00	NON - Part	0.27	1.00	5.72	1.00	13.14	1.00	4.66	2.00	8.26	10.00	16.3	0.0	0.93	0.00	31.8	0.0	5.8	3.0	75	Likely Nutrients	High Risk
16-1	71.	.7 358.7	36.0	3.0	53.8	1.0	71.00	2.00	NON - Part	0.26	1.00	4.93	0.50	17.77	2.00	3.67	5.00	14.10	10.00	25.5	0.5	0.95	0.00	140.5	3.0	5.3	3.0	69	Enriched	Very High Risk
															Mil	l Creek														
11-2	1.7	7 62.3	30.0	3.0	44.7	1.0	83.80	1.00	NON - Part	0.13	1.00	0.91	0.00	7.81	0.00	6.67	1.00	1.07	0.00	27.6	0.5	1.28	1.00	27.3	0.0	29.9	10.0	81	Likely Nutrients	Very High Risk
	1			_		•		-							North	Mill Cre	eek				-									
10-1	1.1	1 31.9	18.0	7.0	63.5	1.0	50.00	5.00	NON - Poor	0.53	2.00	1.77	0.00	13.53	1.00	6.78	1.00	6.40	7.00	12.0	0.0	1.35	1.00	34.5	0.0	7.6	3.0	68	Enriched	High Risk
		Excellen	t <u>≥</u> 50	0	>73	0	>84.5	0	FULL	<u><</u> 0.106	0	<u><</u> 3.77	0	<10.36	0	>6.9	0	<2.0	0	<17.50	0	<1.07	0	<35	0	<2.5	0	<u>></u> 94	Not Nutrients	Insuff. Data
	lition	Good	>41-49		41.8-72.9		>75.9	1	FULL	<0.277	1	<5.05	0.5	<12.2	0.5	>6.0	1	<4.0	1	>17.50	0.5	<1.12	0.5	<79	1	<5.1	1	<u>></u> 82	Not Nutrients	No Risk
Cate Thres		Fair	30- <41	3	30-41.7	3	<75.9	2	PARTIAL	<1.020	2	<7.34	1	<14.2	1	>4.0	2	<5.0	3	>31.60	1	<1.63	1	<150	3	<13.8	3	<u>></u> 70 >60	Likely Nutrients	Risk Present
inres	noius	Poor Very Poo	>15-29	10	>15-29	10	<50.1 <25	5	NON-Fair NON-Poor	< <u>1.726</u> >1.726	5	<9.64 >9.64	1.5 2	<16.3	1.5 2	>2.0 <2.0	5	<6.5 >6.5	7	>35.15 >38.69	1.5 2	<2.14 >2.14	1.5	< <u>320</u> >320	10	<28.9 >28.9	10	<u>>60</u> <60	Enriched Highly Enriched	High Risk Very High Risk
	Sour		IEI		IEF			S	IPS	<u>21.720</u> IP	S	<u>29.04</u>	S	<u></u>	S	IP	S	MBI/S		IP:	S	<u>-22.14</u> IP	S	MBI/SN		MBI/N			MBI/SNAP	IEPA ROE
1 - Not Nu	utrient	ts assigned to	full attair	ment AC	LU status.																									

mainstem sites were rated as Not Nutrients with two sites (13-2 and 13-1) due to full AQLU attainment. The overall pattern was similar in 2020, particularly in the hydrologically and habitat modified upstream reach between sites 13-6 and 13-4, which had one enrichment and two Highly Enriched assignments. These are related to a mix of low minimum D.O., high maximum D.O., wide diel D.O. swings, and highly elevated mean sestonic chlorophyll a values. A recent statewide analysis of short-term continuous D.O. data sponsored by the DuPage River Salt Creek Workgroup (DRSCW) concluded that low D.O. values were more related to fish and macroinvertebrate quality than to the width of diel swings or maximum D.O. as a proxy for wider diel swings (MBI 2023b). The study also derived low D.O. thresholds that for General Use attainment of the fIBI or mIBI were in line with certain aspects of the Illinois D.O. standard. The long term analysis of the permanent Datasonde at site 13-6 showed extended periods of very low D.O., especially so during periods of low flow such as was the case in 2021. The hydromodification in the upper reaches acts to increase residence or retention time during low flows a factor acknowledged as big a major factor by Mazor et al. (2022).

The frequency of exceedances of the primary SNAP and most of the secondary and tertiary indicators declined in a downstream direction which shows a diminishing effect of nutrients away from the modified reach of upper mainstem being exacerbated locally by the Wetland Research impoundment. The 2022 results in the mainstem were indicative of increased enrichment further downstream than the 2020 or 2018 results. However, it confirmed the overall conclusion of the 2018 and 2020 assessments that the predominant source of nutrient enrichment is nonpoint sources in the upper watershed the effects of which are exacerbated by the legacy of hydrological and physical modifications that are prevalent in the upper mainstem and tributaries. The entry of large volumes of permanent flow via the major wastewater treatment facilities seems to mitigate most of the negative effects that emanate from the upper watershed, but this was less apparent in the 2022 results.

Enhanced IEPA Risk of Eutrophication Results

The "Risk of Eutrophication" (ROE) was developed by IEPA to screen the potential for adverse nutrient related impacts for stream and river reaches that are not listed by IEPA for phosphorus related impairments as part of the NARP process. Developed by the IEPA Risk of Eutrophication Committee¹ the procedure utilizes a flow chart that essentially includes the exceedance of any one of three thresholds for pH (>9.0 S.U.), sestonic chlorophyll a (>26 μ g/L), D.O. saturation >110%, and pH >8.35 for two (2) or more days. The Risk of Eutrophication was assessed for the same 16 sites as the SNAP analysis and appear alongside the Overall Enrichment Status (Table 15). The ROE is essentially a cultural eutrophication assessment with three of the four indicators in common with SNAP. MBI added enhancements that produced four levels of risk - Very High Risk, High Risk, Risk Present, and No Risk. The Risk Present and No Risk assignments follow the IEPA flow chart with the High and Very High categories based on greater exceedance thresholds and/or a longer duration of exceedances that result in the risk being extended over a longer period time (Table 16). The median sestonic chlorophyll a criterion was supplemented with the maximum value measured at a site. IEPA specifies examining the previous 5 years of

¹ Proposal for Phosphorus Conditions in NPDES Permits - Phosphorus-related impairments & eutrophication (January 17, 2018).

Table 16. Results of applying an enhanced version of the IEPA Risk of Eutrophication methodology used to screen for the potential for
adverse effects of nutrient enrichment on pH, D.O., and sestonic chlorophyll a levels. Enhancements to the ROE include categories
that convey the severity of screening criteria exceedances and using the maximum sestonic chlorophyll a in addition to the mean.
The results are color coded as follows: Red – Very High Risk; Orange – High Risk; Yellow – Risk Present; No Risk – Green. Specific
criteria used are listed at the bottom of the table.

Site ID	River	River Mile	Drainage Area (sq. mi.)	Max. pH (S.U.)	% DO Saturation	Days D.O. Sat. >110%	Mean Grab Sestonic Chlorophyll a	Max. Grab Sestonic Chlorophyll a	Risk of Eutro- phication
			,					. ,	-
13-6	DesPlaines River	109.30	123.7	8.37	123.4	2	13.9	29.0	High Risk
13-5	DesPlaines River	106.60	137.3	8.47	147.0	3	33.3	70.0	Very High Risk
13-4	DesPlaines River	102.90	145.6	8.37	112.5	2	64.8	130.0	Very High Risk
13-19	DesPlaines River	99.72	213.2	8.48	110.7	1	23.3	31.0	High Risk
13-18	DesPlaines River	99.30	212.9	8.66	166.5	3	29.5	37.0	High Risk
13-3	DesPlaines River	98.70	220.3	8.24	118.3	2	22.2	33.0	High Risk
13-2	DesPlaines River	96.82	225.4	8.04	134.3	3	14.9	24.0	Risk Present
13-1	DesPlaines River	94.20	232.0	8.17	150.2	4	8.5	15.0	Very High Risk
16-6	DesPlaines River	87.10	261.4	8.22	123.2	2	4.0	7.6	Risk Present
16-5	DesPlaines River	83.60	268.1	8.46	166.3	2	5.6	11.0	High Risk
16-4	DesPlaines River	80.00	273.2	8.19	110.0	0	5.4	9.0	No Risk
16-3	DesPlaines River	76.70	314.7	8.32	145.2	1	5.1	5.8	Risk Present
16-2	DesPlaines River	75.40	324.0	8.50	171.9	3	5.8	10.0	High Risk
16-1	DesPlaines River	71.70	358.7	8.96	236.9	3	5.3	11.0	Very High Risk
11-2	Mill Creek	1.71	62.3	8.07	96.7	0	29.9	72.0	Very High Risk
10-1	North Mill Creek	1.10	31.9	8.99	164.6	3	7.6	13.0	High Risk
		biastice (POS) or		Max pH >9.0	%Sat. >200	4 Days	20 uz/l	Maximum Sestonic Chlorophyll a Used in lieu of Median;	pH >9.0 S.U.; or Median Sestonic Chloropyll a >26 or Daily Maximum
Eni	nanced IEPA Risk of Eutrop	inication (ROE) Crit	eria	Max pH >8.35	%Sat.>110	3 Days	>26 µg/L	>26 µg/L High Risk,	pH >8.35 S.U. and Daily Maximum D.O.
				Max pH >8.35	%Sat.>110	1-2 days		>60 µg/l Very High Risk	Saturation >110% for 2 or more days.

data, but only the 2020 and 2022 data used in the SNAP analysis was sufficient to calculate the ROE status.

The 2022 results showed six (6) sites with a Very High Risk, seven (7) with a High Risk, three (3) with Risk Present, and one (1) No Risk results. The Very High Risk outcomes matched either the Highly Enriched or Enriched SNAP outcomes at three sites (Table 15) including two of the sites in the hydrologically and habitat modified upper mainstem. The other Very High Risk outcomes did not match well with the SNAP narratives including one Not Nutrients SNAP outcome. The seven (7) High Risk outcomes matched Enriched SNAP outcomes at four sites and Likely Nutrients at three sites. The three (3) Risk Present outcomes matched Likely Nutrients SNAP outcome. Four of the Very High outcomes were driven by all four indicators with sestonic chlorophyll a exceedances in the very poor range at four (4) sites and the other two (2) sites by D.O. saturation levels >110%, site 16-1 with a 236% value, and 3-4 days with excessive saturation levels (Table 16). Nine sites had maximum pH values >8.35 S.U.

Table 17. The total SNAP score and overall enrichment status at sites with sufficient data inthe upper Des Plaines River mainstem in 2018, 2020, and 2022

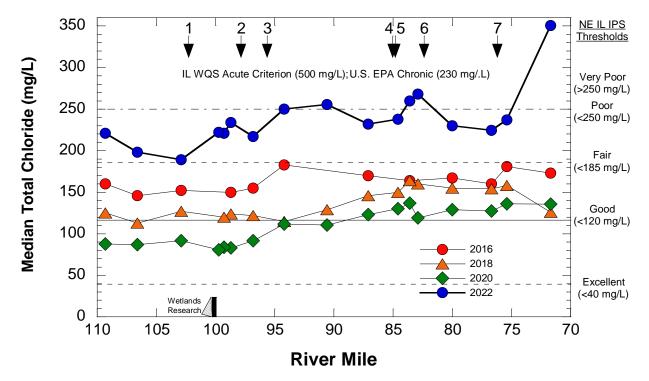
	20	18	20)20	20	22
	Total SNAP	Overall Enrichment	Total SNAP	Overall Enrichment	Total SNAP	Overall Enrichment
Site ID	Score	Status	Score	Status	Score	Status
13-6	75	Likely Nutrients	57.5	Highly Enriched	64	Enriched
13-5	64	Enriched	63.5	Enriched	66	Highly Enriched
13-4	66	Enriched	74.5	Likely Nutrients	72	Highly Enriched
13-18			76.0	Likely Nutrients	73	Enriched
13-19	87	Not Nutrients	65.5	Enriched	84	Likely Nutrients
13-3	83	Not Nutrients	81.0	Likely Nutrients	75	Enriched
13-2	88	Not Nutrients	80.0	Likely Nutrients	86	Not Nutrients
13-1	83	Not Nutrients	83.0	Not Nutrients	71	Not Nutrients
16-6	89	Not Nutrients			84	Not Nutrients
16-5	88	Not Nutrients			76	Likely Nutrients
16-4	86	Not Nutrients	84.5	Not Nutrients	77	Likely Nutrients
16-3	84	Not Nutrients	87.5	Not Nutrients	86	Not Nutrients
16-2	81	Not Nutrients	89.0	Not Nutrients	76	Likely Nutrients
16-1	76	Likely Nutrients	85.0	Not Nutrients	69	Enriched

Trends in SNAP Enrichment Status and Risk of Eutrophication 2018-22

The SNAP procedure was also applied in the upper Des Plaines River mainstem in 2018 and 2020, with the latter year being the first use of the weighted SNAP scoring procedure. The Overall Enrichment Status results (Table 17) show an increasing trend between 2018, 2020, and 2022 with more severe and more frequent Highly Enriched and Enriched results in succeeding survey years. One constant between each survey year was status at the three sites in the upper

modified reach of the mainstem having at least two sites with an Enriched outcome and at all three sites in 2020 and 2022. The frequency of Likely Nutrients reached further downstream in 2020 than in 2018 and moreso in 2022 than in 2020. Out of the three years, 2022 had the lowest flows (see Figure 4), but all had intervening elevated flow events during the summerearly fall period. The 2022 survey followed the lowest flow year in 2021 that had no intervening high flow events which was reflected in the continuous data at site 13-6 in 2021, especially for D.O. and sestonic chlorophyll a. The legacy hydrologic alterations in the upper watershed have not recovered naturally and contribute to increased retention times in the mainstem. Coupled with the largely nonpoint sources of nutrient loadings, it creates a dynamic that exacerbates low D.O., wider diel D.O. swings, elevated sestonic chlorophyll a levels, elevated temperatures, and nuisance plant biomass including algae and macrophytes. A working hypothesis is that the increase in Enriched and Highly Enriched SNAP outcomes downstream from the hydromodified reach are the result of exporting that biomass into the lower reaches of the mainstem. The median flow just shy of the 75th percentile duration value of 239 cfs and periodic high flow events in 2018, some of which exceeded flood stage, decreased residence time and were sufficient to export the seasonal buildup of nuisance plant biomass out of the study area which in effect "cleansed" the mainstem resulting in consistent Not Nutrient SNAP outcomes downstream from the Wetlands Research riffle. The flows in 2020 were lower with the median just above the 50th percentile of 110 cfs, but with intervening high flow events, some of which exceeded flood stage, but with Not Nutrients being pushed further downstream to site 13-1 downstream from the NSWRD Waukegan and Gurnee WRFs. Flows in 2022 were lower overall with the medina below the 50th percentile of 110 cfs and the statistical maximum just over 400 cfs. Adding to the more sustained lower flows were many fewer episodes of elevated flows the highest of which was less than 1,000 cfs. These likely failed to push the excess nuisance biomass out of the upper mainstem study are resulting in more frequent Enriched and Likely Nutrients outcomes downstream from the Wetlands Research riffle. The Not Nutrient assignments at sites 13-1 and 13-2 would have been Likely Nutrient if not for the full attainment of the AQLU biocriteria. Hence, the key to resolving Enriched and Highly Enriched and Likely Nutrient outcomes is to restore the altered hydrology and habitat in the upper watershed and mainstem to prevent or reduce nuisance plant biomass that eventually is exported downstream.

Ionic Strength Parameters

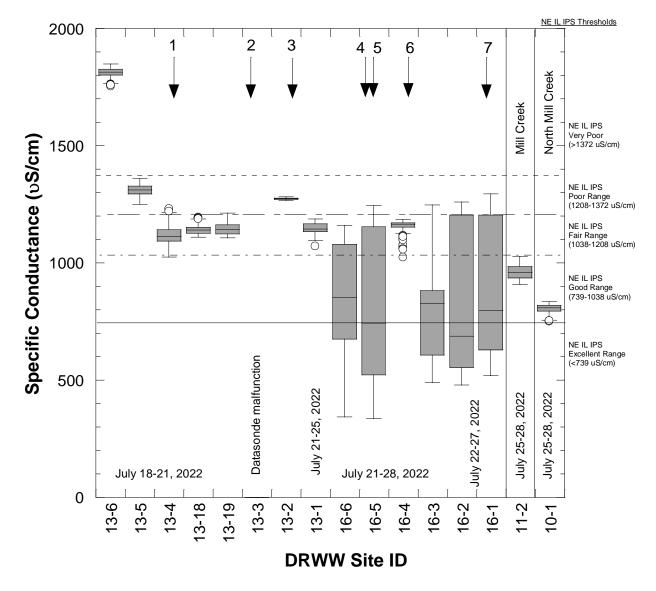

Ionic strength parameters are generally in the form of dissolved solutes that can be delivered to rivers and streams in runoff events and in point source effluents - some are specifically associated with urban runoff. These include parameters measured in the water column and commonly include conductivity, total dissolved solids, and ions such as chlorides and sulfate. Typically, DRWW analyses have been geared to urban parameters that also include common heavy metals, but these were not analyzed in the water nor sediment samples in 2022.

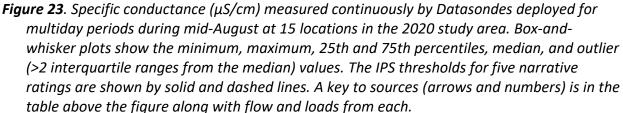
Chlorides

In temperate climates such as exist in northern Illinois, dissolved materials in the form of chlorides are an emerging pollutant of concern because they accumulate in riparian zone soils

and shallow groundwater and have been documented to reach concentrations that can threaten and impair aquatic life. Of particular concern in urban areas with high pavement density is the concentration of chlorides from winter salt applications and point source loadings from water treatment blowdown. Kelly et al. (2012) identified a steadily increasing trend in chloride levels in the Illinois River at Peoria where the median increased from 20 mg/L in 1947 to nearly 100 mg/L in 2004 with high values in the 1940s of <40 mg/L rising to >300 mg/L by 2003. Chlorides do not exhibit a simple runoff and export mode of effect, but rather accumulate in near surface groundwater (Kelly 2008), riparian soils, and land surfaces adjacent to streams. Seasonal studies have shown that elevated summer concentrations are correlated with higher and acute concentrations during late winter and spring periods (Kaushal et al. 2005). Research in New England (Kaushal et al. 2005) and Minnesota (Novotny et al. 2008) show that chlorides can accumulate in watersheds and that there is a strong association between high winter and elevated summer concentrations. Novotny et al. (2008) identified that 78% of the road salt applied in a Minnesota watershed accumulated in a given year and contributed to an increase in summer chloride concentrations.

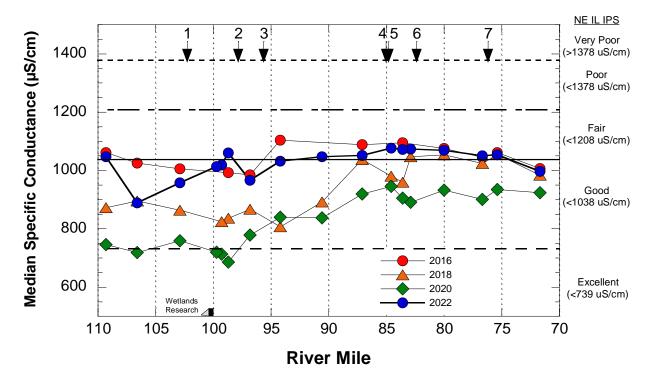
Median and mean total chloride concentrations (mg/L) in the upper Des Plaines mainstem ranged from poor to very poor at every site in 2022 (Figure 22; Table 10). This contrasts with the good to just exceeding fair values in 2020. The 2022 median values were the highest of the four years of data 2016-2022. Chloride levels were in the poor range downstream to site 13-2 (RM 96.8) downstream from which five (5) of 10 sites exceeded the very poor range. The


Figure 22. Concentrations (mg/L) of median chloride in the upper Des Plaines River mainstem during June-October 2016-2022. Dashed and solid lines represent IPS derived effect thresholds correlated with ranges of biological quality and as listed in Table 7. A key to sources (arrows and numbers) is in Figure 5.


general pattern was a more than moderate increase in a downstream direction as the mainstem emerged from agricultural and suburban land uses in the upper watershed to increasingly urbanized land uses in downstream watersheds (especially the tributaries) along with effluent dominance. Median chloride values were the next highest during the low flow year of 2016 with all fair values while the 2020 values were the lowest in the excellent and good ranges. The 2018 results were borderline good-fair to fair. These results tracked with flow, the relationship being inverse with highest values under the lowest flows. Median chloride values were in the poor range at site 11-2 (RM 1.71) in Mill Creek, excellent and 10-1 in North Mill Creek (RM 1.10), and very poor at site 10-7 (RM 11.3; Table 10).

Conductivity

Dissolved materials are also measured by specific conductance or conductivity which is depicted in Figure 23 for continuous data and Figure 24 and Table 10 for grab sample results. The continuous specific conductance results showed that most sites with values exceeding the good IPS threshold and some sites with comparatively higher values in the fair, poor, and very poor ranges. Site 13-6 (RM 109.3) had the highest values by far in 2022 with 75% of readings above 1800 μ S/cm and the only ones in the very poor range. The next site downstream at 13-5 (RM 106.6) had the second highest values with 75% above 1300 μ S/cm. Sites 13-18 (RM 99.72), 13-19 (RM 99.3), 13-2 (RM 96.8), and 13-1 (RM 94.2) each had a very compressed range with all except 13-2 (poor range) in the fair range. Beginning at site 16-6 (RM 87.1) all of the sites with the exception of 16-4 had comparatively wide ranges of variation in their minimum to maximum and interquartile ranges of 400-800 µS/cm. The median values were mostly in the good range with upper quartiles and maximums in the fair and poor ranges. The width of the ranges without showing outliers suggests a regular and cyclic "swing" of which the cause was not determined. The results at site 16-4 were as compressed as the upstream sites previously described with all values in the fair range. Compared to 2020, the 2022 results are much more elevated and reflect the lower flows and less dilution in 2022. The two sites in Mill Creek at site 11-2 (RM 1.7) and North Mill Creek at site 10-1 (RM 1.1) were both entirely within the good range and the lowest in the 2022 study area.


Median and mean conductivity based on grab samples from the mainstem had values that were comparable or lower than the Datasonde results (Figure 24), but none of the poor and very poor exceedances revealed by the continuous results (Figure 23). Both mean and median conductance values in 2022 ranged from good to fair and followed a general pattern of increase from upstream to downstream except for site 13-6 that had median and mean value sin the fair range. The longitudinal plot shows the 2022 median conductance values being comparable to 2016 with the exception of site 13-5 which was lower and in the good range. The highest median values in 2016 occurred under substantially lower flows that 2018 and 2020, but comparable to 2022. An examination of the maximum conductivity grab sample values shows a different result with all maximums exceeding the poor threshold in the upper mainstem and increasing markedly to the very poor range beginning at site 13-3 (RM 98.7) downstream from Mill Creek and the LCDPW Mill Creek WWTP and remaining in the very poor and poor range downstream to site 16-1 with the exception of a fair value of 1204 μ S/cm at site 16-8 which was almost in the poor range. This reach of river is dominated by wastewater effluent and the

maximums reflect that effluent dominance. The difference between the median and maximum values suggests that the poor and very poor values are intermittently present and most likely due to periodicity of low daily river flows and point source inputs.

Median conductivity values in Mill Creek and North Mill Creek were in the excellent and good ranges reflecting background conditions (Table 10). Maximum values were in the fair and a

Figure 24. Median specific conductance in the upper Des Plaines River mainstem during June-October 2016-22. Dashed and solid lines represent IPS derived effect thresholds correlated with ranges of biological quality and as listed in Table 6. A key to sources (arrows and numbers) is in Figure 5.

single site (11-3) located well upstream in in North Mill Creek with a poor value. Still, these maximum values were well below those observed in the effluent dominated reach of the

2021 Water Quality Results

Because of the extremely low flows in 2021 and the knowledge gained by observing the effect of low flows on certain chemical parameters in prior surveys, the median and mean values were examined (Table 18). Nearly every parameter had a more serious exceedance of an IPS or other threshold in 2021 than any other year including 2022, which was related to the extended period of extremely low flows that spanned the summer and early fall months. Minimum flows were below the Q_{7.10} critical low flow of 37cfs for almost 25% of the time. A minimum flow of 12.7 cfs occurred on September 25 with flows <37 cfs occurring frequently between July 1 and September 30. The maximum flow of 297 occurred in late October. This flow regime was much lower than in 2016 or 2022 and the chemical data showed it. All 11 parameters were elevated compared to 2022 which was elevated compared to 2018 and 2020. Ammonia-N was in the poor range between 13-18 in the Wetland Research riffle impoundment to 13-16 at Buckley Rd. which was seemingly unrelated to the major WTTP discharges. Nitrate-N levels spiked to very poor levels at site 13-3 which is downstream from Mill Creek and the LCDPW Mill Creek WWTP. These values extended downstream to 16-3 which is downstream from the largest WWTP sources. Total phosphorus was likewise elevated at 13-3 mostly in the fair range, but with a single very poor and three (3) poor exceedances. Soluble reactive P was likewise elevated to

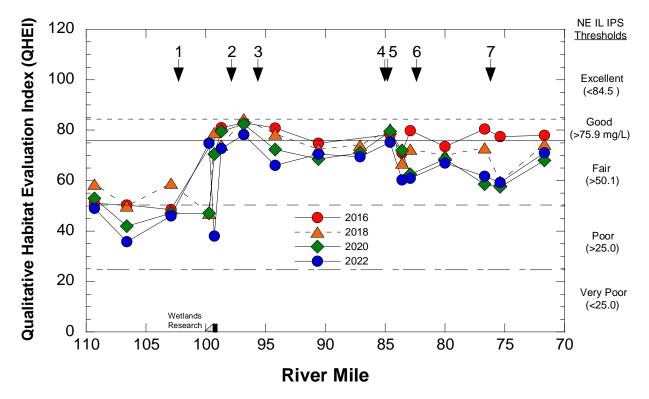
Table 18. Mean and median values for 11 selected chemical/physical water quality parameters at 20 sites in the Upper Des Plaines River study area in 2021. NE Illinois IPSthresholds are listed at the bottom of the table and the results are color coded accordingly. The difference between total P and ortho P is reported with differences >0.10yellow highlighted.

			Nitrogen,		-			Sol	uble																
			Ammonia	Total N	litrates			Rea	ctive			Sest	onic			То	otal								
		Drainage	(as N)	(as Ni	trate+	Phosp	horus,	Phosph	orus (as	Total P	minus	Chloro	phyll a	Nitr	ogen,	Suspe	ended	Chlo	oride	Condu	uctivity	Tempe	rature		
	River	Area (sq.	mg/L	Nitri	te-N)	Total	(as P)	P	O ₄)	Ort	ho P	μg	g/L	Kjelda	hl, Total	So	lids	m	g/L	uS,	/cm	(Fie	eld)	pH (F	ield)
Site ID	Mile	mi.)	Mean Median	Mean	Median	Mean	Median	Mean	Median	Mean	Median	Mean	Median	Mean	Median	Mean	Median	Mean	Median	Mean	Median	Mean	Median	Mean	Median
	r	1								Des	Plaines	River M	ainsten	ו	-										
13-6	109.3	123.7	ND ND	0.20	0.31	0.153	0.107	0.037	0.039	0.116	0.067	39.7	47.0	2.00	2.04	48.8	53.9	398.0	398.0	1397	1424	24.3	24.3	7.95	7.98
13-5	106.6	137.3	ND ND	0.06	0.07	0.094	0.105	0.034	0.035	0.060	0.070	-	-	1.56	1.54	51.7	55.8	410.0	410.0	1440	1484	24.0	23.6	8.05	8.09
13-4	102.9	145.6	ND ND	0.08	0.11	0.111	0.116	0.069	0.079	0.042	0.037	46.0	45.0	1.56	1.29	30.0	30.3	445.0	445.0	1498	1465	23.4	23.3	7.80	7.81
13-18	99.7	212.9	0.224 0.250	0.31	0.70	0.042	0.040	0.010	0.012	0.032	0.029	35.7	34.2	1.72	1.30	30.3	36.3	246.5	246.5	1258	1328	18.6	20.7	7.86	8.17
13-19	99.3	213.2	0.259 0.267	0.33	0.08	0.075	0.081	0.036	0.025	0.038	0.055	-	-	1.24	1.15	15.5	10.2	310.0	310.0	1289	1323	17.9	18.8	7.83	7.95
13-3	98.7	220.3	0.213 0.175	11.33	13.33	1.626	0.612	1.499	0.552	0.127	0.060	18.2	18.0	0.65	0.60	11.9	10.0	170.0	170.0	1072	1083	22.1	21.9	7.87	7.90
13-2	96.8	225.4	0.208 0.190	11.25	7.73	1.927	0.772	1.768	0.673	0.158	0.100	27.1	11.5	0.46	0.56	10.8	8.9	308.0	308.0	1156	1005	17.1	20.9	7.47	7.53
13-1	94.2	232.0	0.200 0.149	11.54	12.40	1.562	0.734	1.388	0.665	0.174	0.069	11.8	12.1	0.58	0.60	6.8	4.8	372.0	372.0	1321	1140	17.5	21.2	7.55	7.60
13-16	90.6	253.8	0.190 0.175	11.09	12.40	0.951	0.316	0.858	0.254	0.094	0.062	-	-	0.54	0.54	5.3	5.0	235.0	235.0	1188	1108	18.4	18.2	7.71	7.67
16-6	87.1	261.4	0.190 0.175	14.87	14.80	0.975	0.593	0.895	0.560	0.080	0.033	46.9	28.1	0.62	0.64	6.4	6.9	238.5	238.5	1142	1066	18.4	18.8	7.71	7.67
16-7	84.6	266.5	ND ND	12.92	12.30	1.027	0.615	0.945	0.580	0.082	0.035	-	-	ND	ND	3.3	2.7	248.0	248.0	1138	1065	18.3	20.7	7.85	7.88
16-5	83.6	268.1	ND ND	12.78	13.20	0.959	0.588	0.773	0.555	0.186	0.033	15.8	11.6	0.52	0.55	11.6	4.9	267.0	267.0	1170	1072	18.5	20.1	7.79	7.82
16-8	82.9	268.9	ND ND	6.72	6.44	0.575	0.244	0.485	0.169	0.090	0.075	-	-	0.84	0.87	9.0	4.4	246.0	246.0	1121	1059	17.7	18.7	7.73	7.74
16-4	80.0	273.2	ND ND	15.48	16.10	1.133	0.581	0.995	0.541	0.138	0.040	93.4	11.2	0.56	0.61	6.8	6.3	186.0	186.0	945	1042	21.6	21.7	7.78	7.87
16-3	76.7	314.7	ND ND	10.77	12.80	0.474	0.486	0.419	0.446	0.055	0.039	21.0	18.0	0.75	0.60	3.2	2.2	196.0	196.0	946	1020	22.9	23.0	7.88	7.86
16-2	75.4	324.0	0.197 0.137	8.34	9.71	0.451	0.439	0.324	0.362	0.127	0.078	-	-	0.66	0.56	5.9	3.8	284.0	284.0	1252	1152	17.7	17.6	7.83	7.73
16-1	71.7	358.7	0.194 0.121	6.69	6.33	0.306	0.281	0.255	0.224	0.051	0.057	13.8	16.0	0.67	0.73	5.1	4.2	383.5	383.5	1318	1204	17.6	17.5	7.93	7.83
		•									Mi	ll Creek													
11-2	1.7	62.3	0.262 0.250	0.38	0.14	0.174	0.164	0.115	0.103	0.059	0.061	71.3	71.0	1.30	1.33	11.6	9.2	305.5	305.5	1165	1038	18.8	22.3	7.58	7.92
											North	Mill Cre	ek												
10-7	11.3	19.2	0.495 0.495	0.35	0.35	0.163	0.163	0.092	0.092	0.071	0.071	20.2	20.2	2.30	2.30	141.0	141.0	17.2	17.2	634	634	21.4	21.4	7.57	7.57
10-1	1.1	31.9	0.219 0.246	1.84	1.72	0.160	0.108	0.104	0.056	0.056	0.052	83.8	48.3	1.24	1.21	28.6	22.0	234.0	234.0	1016	944	17.4	21.2	7.56	7.92
		Excellent	<0.084 <0.084	<u><</u> 3.77	<u><</u> 3.77	<u>≤</u> 0.106	<u><</u> 0.106	<0.050	< 0.050	<0.050	<0.050	<2.5	<2.5	<1.07	<1.07	<u><</u> 17.5	<u><</u> 17.5	<40.0	<40.0	<739	<739				
Condition	Category	Good	<0.100 <0.100	<5.05	<5.05	<0.277	<0.277	<0.100	<0.100	<0.100	<0.100	<5.1	<5.1	<1.12	<1.12	>17.5	>17.5	<120.0	<120.0	<1038	<1038				
Thres		Fair	<0.190 <0.190	<7.34	<7.34	<1.020	<1.020	>0.100	>0.100	>0.100	>0.100	<13.8	<13.8	<1.63	<1.63	>31.6	>31.6	<184.9	<184.9	<1208	<1208				
		Poor	<0.280 <0.280	<9.64	<9.64	<1.730	<1.730	>0.250	>0.250	>0.250	>0.250	<28.9	<28.9	<2.14	<2.14	>35.2	>35.2	<249.8	<249.8	<1378	<1378				
	Source	Very Poor	<u>>0.280</u> <u>>0.280</u> IPS	<u>></u> 9.64	<u>></u> 9.64 >S	<u>></u> 1.730 IP	<u>></u> 1.730 S	>0.500 №	>0.500 1BI	>0.500	>0.500	>28.9 MBI/	>28.9 NSAC	<u>></u> 2.14	<u>></u> 2.14 PS	>38.7	>38.7 PS	<u>></u> 249.8	<u>></u> 249.8 PS	<u>>1378</u>	<u>>1378</u> PS				
	Jource						•	14		10		11101/							•						

68 | Page

very poor levels between 13-3 and 16-5. Sestonic chlorophyll a, TKN, and TSS each were elevated in the modified upper reach with very poor and poor values. Chloride was elevated to poor and very poor at all sites while conductivity was elevated between 13-6 and 13-4. Temperature an pH were elevated compared to 2021 particularly at sites 13-6, 13-5, and 13-4 in the modified upper reach of the mainstem. Ammonia-N, sestonic chlorophyll a, and chloride were elevated to very poor at site 11-2 in Mill Creek which is downstream from the LCDPW Mill Creek WWTP. North Mill Creek site 10-1 also had elevated ammonia-N, sestonic chlorophyll a, and chloride. Site 10-7 exhibited strong nonpoint source indications with elevated ammonia-N, sestonic chlorophyll a, TKN, and TSS into the poor and very poor ranges. With the exception of chloride all were substantially lower in 2022.

Physical Habitat Quality for Aquatic Life – QHEI


The physical habitat of a stream or river is a primary determinant of biological quality and potential. Streams in the glaciated Midwest, left in their natural state, typically offer pool-runriffle sequences, moderate to high sinuosity, and well-developed channels with deep pools, heterogeneous substrates, and cover in the form of woody debris, hard substrates, and aquatic macrophytes. Lower gradient streams may not offer as distinct of a pool-run-riffle sequence and are oftentimes run and glide dominated, but can still offer a diversity of substrates, well developed pool habitats, and well developed instream cover features associated with woody debris and aquatic macrophytes. The Qualitative Habitat Evaluation Index (QHEI) categorically scores basic components of stream and riverine habitat into ranks according to the degree to which those components are found compared to a natural state, or conversely, in an altered or modified state. In the Upper Des Plaines River study area, QHEI scores and physical habitat attributes were recorded in conjunction with the fish sampling conducted at each site.

Des Plaines River 2022 Mainstem Habitat Assessment Results

Habitat quality in the upper Des Plaines River in 2022 ranged from poor (4 sites) to good (1 site) with the majority of the mainstem in the middle to upper fair range (Figure 25). The upstream most four (4) sites between site 13-6 and the Wetlands Research impoundment scored in the mid to upper poor range (38.0-49.0). This was the result of the extensive hydrological and physical modifications in the upper mainstem. The lowest QHEI score of 38.0 at site 13-18 (RM 99.72) was due to the impounded habitat formed by the Wetland Research artificial riffle. The incremental decline in QHEI scores in the upper modified reach between 2018 and 2022 was due to an increased predominance by muck and silt substrates and the reduction in instream cover at site 13-6 (RM 109.3). Sites downstream from the Wetland Research riffle and through the remainder of the mainstem scored considerably higher and followed a similar trend to previous years, but were within the mid to upper fair range (Figure 24). The only good QHEI score was 78.3 at site 13-2 (RM 96.8). The incremental decline in QHEI scores between 2016 and 2018 and 2020 seemed to continue throughout the mainstem in 2022.

QHEI Attributes Matrix 2022

High influence modified attributes were present only at the four (4) sites in the upper modified

Figure 25. Qualitative Habitat Evaluation Index (QHEI) scores in the upper Des Plaines River mainstem in 2016, 2018, 2020, and 2022. The IPS narrative ranges of QHEI scores from excellent to very poor are indicated by solid and dashed lines. A key to sources (arrows and numbers) is in Figure 5.

reach which resulted in the poor QHEI scores (Table 19). High influence attributes included silt/muck substrates at all four sites (13-6, 13-5, 13-4, 13-18), sparse or no instream cover (sites 13-6 and 13-5), and no recovery from channelization (sites 13-5 and 13-4). The 2020 and 2022 results were identical. The increase in high influence modified attributes since 2016 and 2018 (MBI 2017, 2020) continued to persist in 2022. Moderate influence modified attributes were numerous with the highest number (8) occurring at sites 16-5 (RM 83.6) and 16-2 (RM 75.4) and seven (7) at sites 16-8 (RM 82.9), 16-4 (RM80.0), and 16-3 (RM 76.7). The highest ratios of modified to good attributes ranging from 4.0-9.0 continued to occur at the four (4) sites upstream of the Wetland Research riffle impoundment. The ratio of modified:good attributes was poor (>4.00) at two of the upper modified reach sites and poor (>6.00) at 13-5. These sites also had a high number of moderate influence modified attributes ranging from 5-6, all a poor result. Modified: good ratios >2.00 generally indicate an extent of habitat modification and predominance of modified attributes that would require direct mitigation, as opposed to natural recovery, to reverse. It also means that meeting the General Use biocriteria would likely be precluded by habitat regardless of water quality conditions raising concerns about use attainability (Rankin 1995). The sites with modified:good ratios <2.00 is the result of having

Table 19. QHEI matrix of good and modified habitat attributes for sites in the upper Des Plaines River Year 5 study area during 2022. QHEI scores are shaded in accordance with IPS derived ranges; blue – excellent; green – good; yellow – fair; orange – poor; red – very poor. Ratios of poor and good attributes and modified:good ratios are shaded in accordance with the narrative categories at the bottom of the table.

				·		Go	ood Ha	bitat A	Attribu	tes				High	Influe	nce M	odified	Attrib	outes		·		Мос	lerate	Influe	nce Mo	odified	Attrib	utes	·				
Site ID	River Mile	QHEI	No Channelization	Boulder, Cobble, Gravel	Silt Free	Good-Excellent Development	Moderate-High Sinuosity	Moderate-Extensive Cover	Fast Flow w Eddies	Little to No Embeddedness	Max Depth > 40 cm	No Riffle Embeddedness	Good Habitat Attributes	Channelized or No Recovery	Silt/Muck Substrates	No Sinuosity	Sparse No Cover	Max Depths <40 cm	High Influence Poor Attributes	Recovering from Channelization	Mod-High Silt Cover	Sand Substrates (Boatable sites)	Hardpan Origin	Fair- Poor Development	Low Sinuosity	< 2 Cover Types	Intermittent Flow or Pools <20 cm	No Fast Current Types	Mod-Extensive Embeddedness	Mod-Extensive Riffle Embeddedness	No Riffle	Poor Habitat Attributes	Ratio of Modified (High) to Good	Ratio of Modified (All) to Good
			1	1	1	1	1		1	1				D	1	ines Riv		2			1	1				1			1	1		-		
13-6	109.30	49.00											2		•		•		2	•	•			•				•	•	•		6	1.00	4.00
13-5	106.60	35.80											1	•	•	•	•		4		•			•				•	•		•	5	4.00	9.00
13-4	102.90	46.00											2	•	•				2		•			•	•			•	•		•	6	1.00	4.00
13-18	99.70	38.00											2		•	•			2		•			•	•			•	•		•	6	1.00	4.00
13-19	99.30	74.80	•							_			7						0		•	•		•				•	•			5	0.00	0.71
13-3	98.70	72.80				_			_				7						0		•	•		•				•				4	0.00	0.57
13-2	96.82	78.30	•			•			•				9						0		•	•										2	0.00	0.22
13-1	94.20	66.00	_										4						0	•	•	•		•				•	•	•		/ 	0.00	1.75
13-16 16-6	90.60 87.10	70.50 69.50					-						6 5						0		•	•		•	•			•				5	0.00	0.83
16-6	87.10	75.30											- 5 - 7						0					-	-			•				4	0.00	0.57
16-7	83.60	60.30	-			-	-						3						0	•	•	•		•	•			•		-	•	8	0.00	2.67
16-3	82.90	61.00											4						0	•				•	<u> </u>			•	•			7	0.00	1.75
16-8	82.90	67.00					_						4 6						0	-					•			•	•	•		7	0.00	1.75
16-4	76.70	61.80		-		-				-			3						0		•	•		•	•			•	•	-	•	7	0.00	2.33
16-3	75.40	59.30	<u> </u>										3						0	•	•	•		•	•			•	•		•	8	0.00	2.67
16-1	71.70	71.00											4						0	•	_	•		•	-			•	•	•	_	6	0.00	1.50
															Mill	Creek 2	2022																	
11-2	1.71	83.80											9						0													0	0.00	0.00
	•									·				٨	lorth N	Aill Cre	ek 202	2																
10-7	11.3	28.50											0	•	•	•	•	•	5		•			•				•	•		•	5	6.00	11.00
10-1	1.10	50.00											3		•				1	•	•			•				•	•	•		6	0.33	2.33
	Excellent	<u>></u> 84.5											9						0													0	0.00	< 0.50
	Good Fair	75.9-84.4											8 5-7						0													1 2-3	<0.5 <1.00	<2.00
	Poor	25-50											2-4						2-4													4-6	< <u><</u> 1.00<2.00	<u>>2.00</u> >4.00
	Very Poor	<25											0-1						5													>6	>2.00	>6.00

fewer modified attributes coupled with enough good attributes to offset the negative influence of the modified attributes. Fast current types were absent except at 13-2 (RM 96.82), reflecting the lingering effect of modifications in the low gradient of the upper Des Plaines River mainstem. Sand substrates were observed at all sites excluding the four (4) upstream most sites that had muck/silt substrates. Moderate to high silt cover, moderate-extensive embeddedness, moderate-extensive riffle embeddedness, and fair-poor development were the most commonly observed moderate influence modified attributes observed during the 2022 survey. An increase in the number of good habitat attributes generally offset the elevated number of modified attributes downstream from the Wetland Research riffle with modified:good ratios <2.00 at all sites except sites 16-5 (RM 83.6), 16-2 (RM 76.70), and 16-3 (RM 75.40) a net gain of one site over 2020.

Mill Creek and North Mill Creek 2022 Habitat Assessment Results

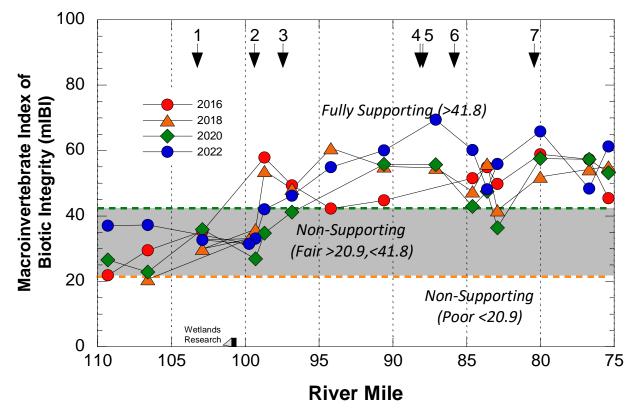
The three tributary sites that were a part of the 2022 study area were likewise assessed for habitat quality with the QHEI. The single site in Mill Creek (11-2) had a good habitat scores of 83.8 (Table 19). Besides having the highest QHEI score in the study area in 2002, it also stood out by having zero modified attributes. The upstream site in North Mill Creek (10-7) had poor habitat quality with a QHEI score of 28.5. All five (5) of the high influence modified attributes were observed at this site. The modified:good attribute ratios were the highest in the study area at 6.00 for high influence attributes and 11.0 when moderate influence attributes are included. North Mill Creek site 10-1 had a borderline poor score of 50.0. The modified:good ratio was 2.33 which is fair. Habitat in Mill Creek at site 11-2 has remained stable with QHEI scores of 79.0 in 2016 (MBI 2017), 80.0 in 2017 (MBI 2018), 75.5 in 2020 (MBI 2022), and 83.8 in 2022. In North Mill Creek QHEI scores at the downstream site (10-1) varied from 70.0 in 2016, 59.0 in 2017, 63.0 in 2020, and 50.0 in 2022 with somewhat elevated modified:good ratios in 2017 (2.00), 2020 (1.50), 2022 (1.50), increasing in 2022 (2.33). The upstream site in North Mill Creek had declined markedly in 2020 from QHEI scores of 52.0 in 2016 and 59.0 in 2017 making the 2022 score of 28.5 a significant decline in just two years. The modified:good ratios were 1.20 in 2016, 1.67 in 2017, elevated to 4.00 in 2020, and extremely elevated to 11.0 in 2022 which is an indication of seriously declining habitat quality over time.

Biological Assemblages – Macroinvertebrates

There were 138 unique macroinvertebrate taxa collected in the upper Des Plaines River mainstem in 2022 (Appendix B). This is an increase from 103 (2016), 104 (2018), and 130 (2020) taxa collected in the prior surveys. The predominant taxa were more facultative than indicative of poor or good water quality. The most numerous was the genus Oligochaeta (segmented worms), followed by Tricorythodes sp. (a Mayfly taxon), *Gammarus sp.*(a Crustacean), Coenagrionidae (a damselfly family), *Rheotanytarsus sp.* (a midge of the Tribe Tanytarsini), *Polypedilum (P.) illinoense* (a tolerant midge species), *Hydroptila sp.* (a micro caddisfly genus), *Gammarus fasciatus* (a Nearctic amphipod), and *Hyalella azteca* (a common amphipod; Table 20).

Table 20. The twenty (20) most abundant macroinvertebrate taxa collected in the upper Des Plaines River mainstem in 2022 including sites collected, numbers collected, taxa group, functional group, and taxa tolerance assignments.

							Illinois	
							Funct.	
Таха		Collection			Ohio EPA	Illinois	Feeding	Таха
Code	Taxa Name	Frequency	Percent	Abundance	Tolerance	Tolerance	Group	Group
03600	Oligochaeta	17	8.50	427	Т	10	CG	N
16700	Tricorythodes sp	11	7.48	376	MI	5	CG	MA
06800	Gammarus sp	10	6.97	350	F	3	SH	Ν
22001	Coenagrionidae	15	5.79	291	Т	5.5	PR	0
85625	Rheotanytarsus sp	12	4.04	203	F	6	CF	Т
84470	Polypedilum (P.) illinoense	16	3.76	189	Т	6	SH	D
53800	Hydroptila sp	13	3.60	181	F	2	SC	CA
06810	Gammarus fasciatus	6	3.44	173	F	3	CG	Ν
06201	Hyalella azteca	12	3.32	167	F	4	CG	Ν
83300	Glyptotendipes (G.) sp	6	3.24	163	MT	10	CF	CA
52200	Cheumatopsyche sp	12	2.89	145	F	6	CF	CA
11130	Baetis intercalaris	10	2.79	140	F	4	CG	MA
69400	Stenelmis sp	14	2.69	135	F	7	SC	CO
17200	Caenis sp	7	2.43	122	F	6	CG	MA
85265	Cladotanytarsus vanderwulpi group sp 5	9	2.37	119	MI	7	CG	D
68700	Dubiraphia sp	14	2.17	109	F	5	CG	CO
83158	Endochironomus nigricans	8	2.13	107	MT	6	SH	D
01801	Turbellaria	16	1.99	100	F	6	PR	Ν
93200	Hydrobiidae	11	1.59	80	F	6	SC	Ν
84450	Polypedilum (Uresipedilum) flavum	13	1.49	75	F	6	SH	D


Taxa Group: N - Non-Insect; MA - Mayfly; O - Odonata; CA - Caddisfly; D - Dipteran; T - Tribe Tanytarsini; CO - Coleoptera

IL Functional Group: CG - Collecter/Gatherer; PR - Predator; CF - Collectors/Filterers; SH - Shredder; SC - Scraper

IL Tolerance Score Ranges from 0 (Least Tolerant) to 10 (Most Tolerant); CG* the genus *Gammarus* does not have a group listed, but the common *Gammarus* species found are listed as CG

Des Plaines River 2022 Macroinvertebrate Assemblage Results

Macroinvertebrate assemblage quality in the upper Des Plaines River mainstem ranged from fair to good with fair results primarily being observed in the upper section of the survey area and good and even two exceptional results in the lower effluent affected reach of the mainstem (Figure 25). Twelve (12) of the 17 mainstem sites met the mIBI General Use biocriterion of 41.8, five (5) more than in 2020 and reversing the decline observed in between 2018 and 2020 . The five (5) upstream most sites were all impaired – four (4) sites upstream from the Wetland Research riffle and one (1) site downstream. The site located in the Wetland Research impoundment was sampled by the macroinvertebrate crew by moving the site upstream, but still within the influence of the impoundment. The mIBI increased steadily downstream from the Wetlands Research riffle to site 16-6 (RM 87.1) where the mIBI of 69.8 was the highest mIBI value in 2022 or in any previous survey. No mIBI values dropped below the General Use biocriterion and another site (16-4) with an exceptional value. An increase in the total number of intolerant taxa, Mayfly taxa, EPT taxa, and a decline in the %tolerant taxa corresponded to the increased mIBI scores (Table 21).

Figure 26. Illinois macroinvertebrate IBI scores in the upper Des Plaines River mainstem in 2016, 2018, 2020, and 2022. IEPA thresholds for determining full support, non-support-fair, and non-support-poor of the General Use for aquatic life are indicated by dashed lines and grey shading. A key to sources (arrows and numbers) is in Figure 5.

Table 21 lists the mIBI, selected mIBI metrics, and other macroinvertebrate assemblage attributes two of which are key biological response signatures associated with toxic impacts (%toxic tolerant taxa) and organic enrichment (%organic enrichment tolerant taxa; Yoder and DeShon 2003). Poor and very poor responses generally occurred upstream from site 13-19 (RM 99.3), which is downstream from the Wetland Research riffle. None of these sites met the General Use mIBI biocriterion. Only two very poor results occurred for intolerant taxa (0) at site 13-4 (RM 102.9) and %tolerant taxa (30.7%) at site 13-19 (RM 99.3) downstream from the Wetland Research riffle. Poor results occurred 12 times for five indicators at sites 13-6, 13-5, 13-18, 13-19, and 13-3. The good numbers of taxa and the absence of any toxic responses suggest that the impairments are due to organic enrichment that is exacerbated by the modified habitat and hydrologic regime in the upper mainstem. The total number of taxa collected at each site ranged from 25-39 taxa. The number of EPT taxa ranged 3-12 with all sites reflecting good or exceptional conditions. The % EPT taxa ranged from 5.7-47.4% with eight (8) sites of good quality, seven (7) sites of fair quality, and two (5) sites of poor quality. The number of intolerant taxa ranged from 0-8, with nine (9) sites exceeding the good threshold, two (3) sites in the fair range, four sites (4) in the poor range, and one (1) in the very poor range. Of the five (5) sites that did not meet the General Use mIBI biocriterion, three (3) had poor values for

Table 21. Selected macroinvertebrate assemblage attributes for sites sampled in the Upper Des Plaines Year 4 study area in 2022. Biological index scores selected metrics are shaded by narrative quality as follows: exceptional – blue; good (fully supporting) - green; fair (nonsupport) - yellow; poor (non-support) – orange; very poor – red (non-support); signatures of toxic and organic enrichment responses are based on Yoder and DeShon (2003).

					М	acroinverteb	rate Assemb	lage Attribut	es		
		Drainage								%Toxic	%Organic
	River	Area		Total	Intolerant	%Tolerant	EPT			Tolerant	Enrich.
Site ID	Mile	(mi.²)	mIBI	Таха	Таха	Таха	Таха	%EPT	MBI	Таха	Таха
					Des Pl	laines River					
13-6	109.30	123.7	37.1	32	2	20.7	5	11.8	6.8	0.3	39.6
13-5	106.60	137.3	37.2	33	2	19.4	5	17.0	6.6	1.5	20.8
13-4	102.90	145.6	32.7	36	0	14.4	5	12.3	6.3	0.4	19.0
13-18	99.72	212.9	31.5	25	2	21.0	3	27.2	7.3	2.3	43.7
13-19	99.30	213.2	33.1	34	4	30.7	4	5.7	8.0	4.2	56.8
13-3	98.70	220.3	42.1	30	2	12.8	6	9.1	5.7	5.5	16.6
13-2	96.82	225.4	46.2	31	3	14.9	5	10.2	5.6	1.3	23.8
13-1	94.20	232.0	54.9	34	4	5.9	7	18.9	5.2	4.2	7.7
13-16	90.60	253.8	60.1	29	5	1.8	9	32.9	4.8	5.8	4.2
16-6	87.10	261.4	69.4	39	8	6.4	9	34.4	4.8	7.8	6.3
16-7	84.60	266.5	60.1	36	6	3.5	9	33.4	5.0	7.6	11.0
16-5	83.60	268.1	48.2	34	6	12.6	9	23.5	5.7	11.2	10.2
16-8	82.90	268.9	56.0	39	6	8.8	9	29.3	5.1	4.0	5.0
16-4	80.00	273.2	65.8	34	5	6.4	11	47.5	5.0	4.0	9.4
16-3	76.70	314.7	48.4	30	3	9.4	6	11.8	5.1	1.8	11.8
16-2	75.40	324.0	61.3	36	4	9.8	12	25.4	5.5	2.1	12.7
16-1	71.70	358.7	53.8	33	6	13.1	7	33.8	5.7	1.0	7.9
					M	ill Creek					
11-2	1.71	62.3	44.7	34	1	5.3	7	46.4	5.9	0.6	14.2
					North	Mill Creek					
10-7	11.30	19.2	40.5	29	3	14.6	2	1.0	6.0	0.3	27.6
10-1	1.10	31.9	63.5	44	6	6.8	12	30.3	5.4	2.9	6.7
		Exceptional	>73	<u>></u> 36	>5	<u><</u> 10	<u>></u> 6	> 49	<u><</u> 5.2	0.0	<5
		Good	<u>></u> 41.8	< 36	<u><</u> 5	<u><</u> 15	>3	>24.5 - 49	<u>></u> 5.2	<5	<15
Narrative 1	Thresholds	Fair	<u><</u> 41.7	<u><</u> 27	<u><</u> 3	<u><</u> 20	2	> 10 - 24.5	<u>></u> 6.0	<20	<u>>15</u>
		Poor	<u><</u> 29	<u><</u> 22	<2	< 28	1	5 - 10	<u>></u> 7.6	<u>></u> 35	<u>>35</u>
		Very Poor	<15	<u><</u> 16	0	<u>> 28</u>	0	< 5	<u>>9</u> .0	>60	>60

intolerant taxa, two (2) for %tolerant taxa, and one (1) %EPT taxa. These five sites also had three (3) %organic tolerant taxa.

Mill Creek and North Mill Creek 2022 Macroinvertebrate Assemblage Results

Macroinvertebrates were sampled at a single site in Mill Creek (11-2) and two sites in North Mill Creek (10-1 and 10-7) in 2022. Both had mIBI scores that met the General Use biocriterion (Table 21). There were 82 total taxa predominated by tolerant and facultative types. The predominant taxa included the caddisfly *Cheumatopsyche sp.*, the amphipod *Gammarus sp.*, the crustacean *Caecidotea sp.*, the segmented worm *Oligochaeta*, the caddisfly *Hydropsyche sp.*, the Chironomidae midge *Polypedilum (Uresipedilum) flavum*, the snail *Physella sp.*, the fingernail clam *Sphaerium sp.*, the beetle *Dubiraphia sp.*, and the damselfly *Coenagrionidae*. The 2022 mIBI of 44.7 and 2020 mIBI of 53.3 in Mill Creek at site 11-2 was a significant improvement from the 2016 result that had a fair mIBI of 25.3. The North Mill Creek mIBI of 63.5 in 2022 was an improvement over the mIBI of 55.8 at site 10-1 that was unchanged from the mIBI of 55.3 in 2016 and only slightly lower than the mIBI of 55.8 in 2019. One (1) poor response occurred at site 11-2 with the remainder or exceptional good responses. North Mill Creek site 11-7 located 10.2 miles upstream from 10-7 failed to meet the mIBI General Use biocriterion by only 1.3 units. This site had one very poor and four fair responses with the remainder good. A prior survey in 2019 had an mIBI value of 54.2 which meets the General Use.

Biological Assemblages – Fish

Forty-seven (47) native and three (3) non-native fish species were collected along with five (5) hybrids comprising a total number of 8,956 individual fish in the Year 5 Upper Des Plaines River mainstem in 2022. The fish assemblage continued to be predominated by tolerant, moderately tolerant, and intermediate fish species (Table 22). Bluegill Sunfish, Bluntnose Minnow, Hornyhead Chub, White Sucker, and Spotfin Shiner were the most numerous species collected in 2022. Common Carp, White Sucker, Bowfin, Channel Catfish, and Northern Pike predominated in terms of biomass. Of the top 15 species by numbers, four (4) are highly tolerant, two (2) moderately tolerant, three (3) highly intolerant, and one (1) sensitive. Two species (e.g., Bowfin and Northern Pike) are common in low gradient and wetland influenced rivers while most of the species are ubiquitous to all types of rivers and streams throughout the region. The 2022 rankings are not substantially different than in 2020 with the highest ranked species being the same.

The top 15 species by numbers and biomass were essentially unchanged between 2020 and 2022. Rosyface Shiner (formerly Carmine Shiner), a highly intolerant species, increased in numbers and rank in 2022 over 2020. Other species that were collected in 2018 were either reduced in numbers or not present in the collections in 2020 or 2022. Rock Bass (*Ambloplites rupestris*), Stonecat Madtom (*Noturus flavus*), Rosyface Shiner (*Notropis rubellus*), Pirate Perch (*Aphredoderus sayanus*), Logperch (*Percina caprodes*), Blackside Darter (*Percina maculata*), and Sand Shiner (*Notropis stramineus*) were reduced by more than 50-90% in 2020 and 2022 compared to 2018. Blackstriped Topminnow (*Fundulus notatus*) was represented by a single individual.

Blackchin Shiner (*Notropis heterodon*) numbered 48 in 2018, but were absent in 2020 and 2022 in addition to Western Banded Killifish (*Fundulus diaphanus menona*) both of which are Illinois listed species. The 2018 occurrence of Blackchin Shiner was likely related to restoration efforts in Upper Des Plaines River watershed lakes (Bland 2013). A new species in 2020 was the invasive Round Goby (*Neogobius melanostomus*) which is a non-native of intercontinental origin that has been expanding throughout the Upper Des Plaines subbasins from its original introduction in ship ballast water in the late 1980s (Sarver 2022). There were 103 individuals collected in 2022 compared to 21 individuals in 2020, but they are still restricted to the four (4) lowermost sites in Upper Des Plaines River study area.

Des Plaines River 2022 Fish Assemblage Results

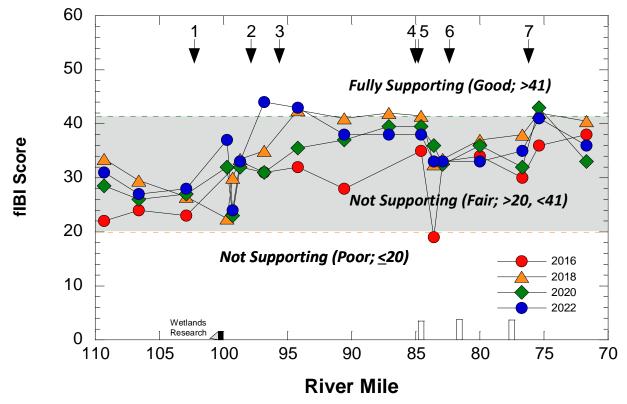

Fish IBI (fIBI) scores are the mean of two sampling passes within the summer-early fall index

Table 22. The fifteen most abundant species by number (left panel) by weight (right panel) collected in the upper Des Plaines mainstem in 2020. IL and OH tolerance assignments, numbers/weight (kg) collected, and percent collected by each (species with blank tolerance cells are intermediate).

		% by	Number/	Illinois	Ohio
Common Name	Latin Name	Number	Km	Tolerance	Tolerance
Bluegill Sunfish	Lepomis macrochirus	14.6	2696	–	P
Bluntnose Minnow	Pimephales notatus	13.5	2490	Т	T
Hornyhead Chub	Nocomis biguttatus	12.9	2382	I	I
White Sucker	Catostomus commersoni	9.7	1795	Т	Т
Spotfin Shiner	Cyprinella spiloptera	8.8	1621		
Pumpkinseed Sunfish	Lepomis gibbosus	4.8	879		Р
Common Carp	Cyprinus carpio	4.7	863	Т	Т
Largemouth Bass	Micropterus nigricans	3.4	633		
Rosyface Shiner	Notropis rubellus	2.4	441	I	I
Smallmouth Bass	Micropterus dolomieui	2.3	431	I	М
Green Sunfish	Lepomis cyanellus	2.3	429	Т	Т
Sand Shiner	Miniellus stramineus	1.8	340		М
Rock Bass	Ambloplites rupestris	1.8	324		
Blackstripe Topminnow	Fundulus notatus	1.6	296		
Gizzard Shad	Dorosoma cepedianum	1.4	262		
		0/ h			
		% by		Illinois	Ohio
Common Name	Latin Name	% by Weight	Kg/Km	Tolerance	Ohio Tolerance
Common Name Common Carp	Latin Name Cyprinus carpio	-	Kg/Km 2262.1		
		Weight		Tolerance	Tolerance
Common Carp	Cyprinus carpio	Weight 61.45	2262.1	Tolerance	Tolerance T
Common Carp White Sucker	Cyprinus carpio Catostomus commersoni	Weight 61.45 11.00	2262.1 404.8	Tolerance	Tolerance T
Common Carp White Sucker Bowfin	Cyprinus carpio Catostomus commersoni Amia calva	Weight 61.45 11.00 4.52	2262.1 404.8 166.5	Tolerance	Tolerance T
Common Carp White Sucker Bowfin Channel Catfish	Cyprinus carpio Catostomus commersoni Amia calva Ictalurus punctatus	Weight 61.45 11.00 4.52 4.46	2262.1 404.8 166.5 164.3	Tolerance	Tolerance T
Common Carp White Sucker Bowfin Channel Catfish Northern Pike	Cyprinus carpio Catostomus commersoni Amia calva Ictalurus punctatus Esox lucius	Weight 61.45 11.00 4.52 4.46 4.22	2262.1 404.8 166.5 164.3 155.4	Tolerance T T	Tolerance T
Common Carp White Sucker Bowfin Channel Catfish Northern Pike Spotted Sucker	Cyprinus carpioCatostomus commersoniAmia calvaIctalurus punctatusEsox luciusMinytrema melanops	Weight 61.45 11.00 4.52 4.46 4.22 3.05	2262.1 404.8 166.5 164.3 155.4 112.4	Tolerance T T	Tolerance T
Common Carp White Sucker Bowfin Channel Catfish Northern Pike Spotted Sucker Largemouth Bass	Cyprinus carpioCatostomus commersoniAmia calvaIctalurus punctatusEsox luciusMinytrema melanopsMicropterus nigricans	Weight 61.45 11.00 4.52 4.46 4.22 3.05 3.00	2262.1 404.8 166.5 164.3 155.4 112.4 110.3	Tolerance T T	Tolerance T T
Common Carp White Sucker Bowfin Channel Catfish Northern Pike Spotted Sucker Largemouth Bass Bluegill Sunfish	Cyprinus carpioCatostomus commersoniAmia calvaIctalurus punctatusEsox luciusMinytrema melanopsMicropterus nigricansLepomis macrochirus	Weight 61.45 11.00 4.52 4.46 4.22 3.05 3.00 1.75	2262.1 404.8 166.5 164.3 155.4 112.4 110.3 64.4	Tolerance T T I I	Tolerance T T
Common Carp White Sucker Bowfin Channel Catfish Northern Pike Spotted Sucker Largemouth Bass Bluegill Sunfish Hornyhead Chub	Cyprinus carpioCatostomus commersoniAmia calvaIctalurus punctatusEsox luciusMinytrema melanopsMicropterus nigricansLepomis macrochirusNocomis biguttatus	Weight 61.45 11.00 4.52 4.46 4.22 3.05 3.00 1.75 1.11	2262.1 404.8 166.5 164.3 155.4 112.4 110.3 64.4 40.9	Tolerance T T I I	Tolerance T T T P I
Common Carp White Sucker Bowfin Channel Catfish Northern Pike Spotted Sucker Largemouth Bass Bluegill Sunfish Hornyhead Chub Smallmouth Bass	Cyprinus carpioCatostomus commersoniAmia calvaIctalurus punctatusEsox luciusMinytrema melanopsMicropterus nigricansLepomis macrochirusNocomis biguttatusMicropterus dolomieuiAmeiurus natalis	Weight 61.45 11.00 4.52 4.46 4.22 3.05 3.00 1.75 1.11 1.01	2262.1 404.8 166.5 164.3 155.4 112.4 110.3 64.4 40.9 37.3	Tolerance T T T	Tolerance T T T P I M
Common Carp White Sucker Bowfin Channel Catfish Northern Pike Spotted Sucker Largemouth Bass Bluegill Sunfish Hornyhead Chub Smallmouth Bass Yellow Bullhead Rock Bass	Cyprinus carpioCatostomus commersoniAmia calvaIctalurus punctatusEsox luciusMinytrema melanopsMicropterus nigricansLepomis macrochirusNocomis biguttatusMicropterus dolomieuiAmeiurus natalisAmbloplites rupestris	Weight 61.45 11.00 4.52 4.46 4.22 3.05 3.00 1.75 1.11 0.58	2262.1 404.8 166.5 164.3 155.4 112.4 110.3 64.4 40.9 37.3 21.3	Tolerance T T T	Tolerance T T T P I M
Common Carp White Sucker Bowfin Channel Catfish Northern Pike Spotted Sucker Largemouth Bass Bluegill Sunfish Hornyhead Chub Smallmouth Bass Yellow Bullhead Rock Bass Black Crappie	Cyprinus carpioCatostomus commersoniAmia calvaIctalurus punctatusEsox luciusMinytrema melanopsMicropterus nigricansLepomis macrochirusNocomis biguttatusMicropterus dolomieuiAmeiurus natalis	Weight 61.45 11.00 4.52 4.46 4.22 3.05 3.00 1.75 1.11 0.58 0.51	2262.1 404.8 166.5 164.3 155.4 112.4 110.3 64.4 40.9 37.3 21.3 18.7	Tolerance T T T	Tolerance T T T P I M
Common Carp White Sucker Bowfin Channel Catfish Northern Pike Spotted Sucker Largemouth Bass Bluegill Sunfish Hornyhead Chub Smallmouth Bass Yellow Bullhead Rock Bass	Cyprinus carpioCatostomus commersoniAmia calvaIctalurus punctatusEsox luciusMinytrema melanopsMicropterus nigricansLepomis macrochirusNocomis biguttatusMicropterus dolomieuiAmeiurus natalisAmbloplites rupestrisPomoxis nigromaculatus	Weight 61.45 11.00 4.52 4.46 4.22 3.05 3.00 1.75 1.11 0.58 0.51 0.46	2262.1 404.8 166.5 164.3 155.4 112.4 110.3 64.4 40.9 37.3 21.3 18.7 17.1	Tolerance T T T	Tolerance T T T P I M

Tolerance: I - highly intolerant; M - sensitive; P - moderately tolerant; T - highly tolerant

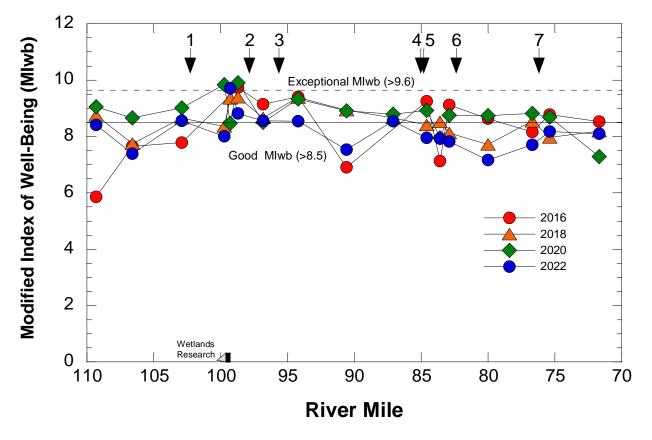

period. The General Use fIBI biocriterion of 41 was met or surpassed at two sites in 2022 up from only a single site in 2020, but down from five (5) sites that met the General Use fIBI biocriterion (Figure 27; Table 22). One of the attaining sites (13-2) was new in 2022. The mean fIBI at 16-2 attained in both 2018 and 2020, but missed by 0.5 units in 2022. The first pass had

Figure 27. Illinois fish IBI (fIBI) scores for the upper Des Plaines River in 2016, 2018, 2020, and 2022. IEPA thresholds for determining full support, non-support-fair, and non-support poor of the General Use for aquatic life are indicated by dashed lines and grey shading. A key to sources (arrows and numbers) is in Figure 5.

an fIBI of 36 and conditions at the site following a spate of elevated flow included an increase in silt/muck substrates and the riffle was degraded. There was a high percentage of generalist feeders and lower percentages of mineral spawners and benthic invertivores. The second pass yielded an fIBI of 45 with aforementioned substrate and habitat degradation being absent. It does confirm the effect that the low magnitude elevated flow events previously described can and do export degraded water quality and increased substrate disturbance into the lower reach of the study area. Other sites between 13-16 and 16-7 had 3.0 fIBI unit departures from the biocriterion, but the difference between the first and second sampling passes were <4 fIBI units. The departures ranged from 6.5-8.5 at all except site 16-2 (previously described) between site 16-5 and 16-1. The fIBI scores were lowest in the uppermost four (4) sites of the mainstem (23.5-30.5) the same as in 2016, 2018, and 2020.

The Modified Index of Well-Being (MIwb) has no formal biocriterion in Illinois, but using the Ohio biocriteria it attained the Ohio equivalent of the General Use at five (5) of the 17 sites, but using the Ohio non-significant departure of 0.5 units increased that number to 10 sites. The site at 13-19 was rated exceptional and the remaining sites were all fair (Figure 28; Table 22). Overall, the MIwb declined in 2022 compared to 2020. Although the MIwb excludes highly tolerant species from the biomass and numbers metrics, it can be affected by moderately

Figure 28. Modified Index of Well-Being (MIwb) for the upper Des Plaines River in 2016, 2018, 2020, and 2022. A key to sources (arrows and numbers) is in Figure 5.

tolerant and intermediate fish species some of which can tolerate moderate amounts of pollution (Yoder and Smith 1999). With only a very few exceptions, the MIwb precedes the IBI in terms of showing recovery once stressor abatements have been adequately implemented. In the Upper DesPlaines River mainstem it is likely responding positively to the moderate organic and nutrient enrichment that emanates from the upper modified reach and in 2022 was exported into the downstream reach.

Table 23 lists the fIBI, selected fIBI metrics, and other fish assemblage attributes one of which exhibits key biological response signatures associated with both organic enrichment (%tolerant) and toxic impacts (%DELT anomalies). Metrics and attributes that had values predominantly in the good range were %DELT anomalies with two (2) sites recording zero (0) anomalies. The %tolerant species ranged from 17.7-33.3% with 14 sites in the good range and the remaining three (3) fair. Intolerant species ranged from 1-4 with good values at only (2) sites, fair values at 11 sites, and the remaining four (4) sites being poor (\leq 1). The poorest performing metric continues to be the %mineral spawners, ranging from 1.20-22.06% with nine (9) sites having poor percentages and the remainder in the fair range. The native species, %DELT, and %tolerant were mostly unchanged from 2020 and 2018. Intolerant species had eight (8) good

MBI/2024-3-1

Table 23. Selected fish assemblage attributes for sites sampled in the Upper Des Plaines Year 5study area in 2022. Biological index scores selected metrics are shaded by narrative qualityas follows: exceptional – blue; good (fully supporting) – green/light green; fair (non-support)- yellow; poor (non-support) – orange; very poor – red (non-support); signatures of toxic andorganic enrichment responses are based on Yoder and DeShon (2003).

					Fish As	semblage	Attributes		
		Drainage							
	River	Area			Native		Intolerant	%Mineral	
Site ID	Mile	(mi. ²)	fIBI	MIwb	Sp.	%DELT	Species	Spawners	%Tolerant
				Des Pla	ines River 2	2022			
13-6	109.30	123.7	30.5	8.4	21.0	0.14	1.5	1.6	23.6
13-5	106.60	137.3	26.5	7.4	17.0	0.00	1.0	1.9	20.6
13-4	102.90	145.6	28.0	8.6	19.0	0.00	1.0	3.6	31.7
13-18	99.72	212.9	23.5	8.0	14.0	0.79	1.0	5.4	17.7
13-19	99.30	213.2	37.0	9.7	25.0	0.81	3.0	22.1	22.1
13-3	98.70	220.3	32.5	8.8	21.5	0.29	3.0	14.9	25.7
13-2	96.82	225.4	43.5	8.6	23.5	0.18	4.0	35.9	21.3
13-1	94.20	232.0	43.0	8.6	21.5	0.34	3.5	56.3	18.9
13-16	90.60	253.8	38.0	7.5	17.5	0.42	3.5	49.2	31.5
16-6	87.10	261.4	38.0	8.5	20.0	0.37	3.0	46.4	27.7
16-7	84.60	266.5	38.0	8.0	21.5	0.61	4.0	22.3	20.9
16-5	83.60	268.1	33.0	7.9	18.5	0.20	3.0	14.0	27.5
16-8	82.90	268.9	33.0	7.8	20.5	0.20	3.5	10.3	24.4
16-4	80.00	273.2	32.5	7.2	15.5	0.41	2.0	22.0	26.1
16-3	76.70	314.7	34.5	7.7	19.5	0.20	3.5	16.8	26.1
16-2	75.40	324.0	40.5	8.2	19.0	1.02	3.5	29.7	23.6
16-1	71.70	358.7	36.0	8.1	18.0	0.50	3.0	23.9	33.3
				Mill	Creek 2022	2			
11-2	1.71	62.3	30.0	8.9	22.0	0.00	2.0	6.3	27.3
				North I	Mill Creek 2	2022			
10-7	11.30	19.2	22.0	NA	6.0	0.00	0.0	0.0	50.0
10-1	1.10	31.9	18.0	6.9	13.0	0.39	0.0	0.0	46.2
		Exceptional	<u>></u> 50	>9.6	<u>></u> 24	0	<u>>6</u>	>44	<u><</u> 16.1
		Good	<u>></u> 41	>8.5	<u>></u> 16	>1.3	<u>></u> 4	>23	<30.3
Narrative 1	nresholds	Fair Poor	<u>>30</u> >15	>5.8 <5.8	<u>>13</u> >9	>3.0 >10	<u>>3</u> >1	>10 >5	<40 >50
		Very Poor	<15 <15	<4.0	< <u>>9</u>	>20	0	<5	>70
		Veryrool	110	NH.U		-20			2/0

results in 2020, but only two (2) in 2022. The %mineral substrate spawners were mixed with three very poor results (0 in 2020) and three (3) exceptional and two (2) good results (0 in 2020).

Mill Creek and North Mill Creek 2022 Fish Assemblage Results

Fish were sampled at a single site in Mill Creek (11-2) and two sites in North Mill Creek (10-7 and 10-1) in 2022. There were 27 native species, one (1) non-native species, and two (2)

hybrids. The most numerous species included Bluegill Sunfish, Bluntnose Minnow, Spotfin Shiner, White Sucker, Green Sunfish, Pumpkinseed Sunfish, Yellow Bullhead, Orangespotted Sunfish, Creek Chub, and Hornyhead Chub. Mill Creek (11-2) had a fair fIBI score and North Mill Creek had fIBI scores that were fair (10-7) and poor (10-1) (Table 23). The 2022 fIBI of 30.0 in Mill Creek at site 11-2 was slightly higher than the 2020 result of 29.5, and lower than the fIBI of 31.0 in 2018, with all better than the poor fIBI of 23 in 2019. The North Mill Creek poor fIBI of 18.0 at site 10-1 was slightly lower than the fIBI of 20.5 in 2020 and 22.0 in 2016 and the same as the poor fIBI of 18.0 in 2019. The poor fIBI of 18.0 at site 10-7 was lower than the 20.5 fIBI in 2020 at site 10.7 and similar to the poor fIBI of 18 in 2019. The MIwb in Mill Creek 11-2 was 8.9 (good) and in North Mill Creek 10-1 was 6.9 (Fair).

Mill Creek at 11-2 had one poor response (%mineral substrate spawners), one fair response (intolerant species), two (2) good, and one (1) exceptional response. North Mill Creek site 10-1 had two (2) very poor, three (3) fair responses, and only one (1) good and one (1) exceptional response. Site 10-7 had three (3) very poor, two (2) fair, and one (1) poor response signature (Table 23).

SYNTHESIS

The baseline biological condition of the upper Des Plaines River mainstem has been shaped by the naturally low gradient and wetland-origins of the region. The current condition of the biological assemblages reflects changes that have altered these natural features mostly via hydrological and physical alterations in the upper watershed related to agricultural and suburban development with more intensive urban development in the lower portions of the study area. Altered hydrology and habitat alterations in the upper mainstem and greater watershed continue to impair the biological assemblages due to the sluggish flows, excessive siltation, substrate embeddedness, nuisance growths of algae and macrophytes, and indicators of excessive organic and nutrient enrichment. The sources are primarily nonpoint in origin that are further exacerbated by the altered flows and habitat in the upper 10 miles of the mainstem. The longitudinal pattern in biological index scores and several chemical parameters strongly suggest that this impact is exported downstream into the effluent dominated reach of the mainstem. This "pollution footprint" varies between years and seems the most related to the duration of low flows that allow nuisance conditions to build up in the upper modified reach and the magnitude and frequency of elevated flows that move this material downstream. The magnitude of the elevated flows determines if it resides in the lower reach of the study area or if it carried and dispersed beyond the study area. Overall, biological performance improved from 2016 to 2018 with the longest reach of full attainment occurring over nearly 10 miles between site 13-1 (RM 94.2) to site 16-7 (RM 84.6) where habitat quality improved and the entry of large volumes of treated wastewater from several point sources acted to "dilute" upstream pollution. Despite the backsliding observed in 2020 at four of the former fully attaining sites, the continuing attainment at site 16-2 (RM 75.4) is downstream from all wastewater inputs. Of the four (4) sites that did not attain the full General Use in 2020 that were in attainment in 2018, three (3) did not significantly depart from the fIBI which was the most limiting of the two biological indices. The number of fully attaining sites improved relative to 2020 at sites 13-2 and 13-1. The next three sites (13-16 to 16-7) missed the fIBI biocriterion by only 3.0 units and by only 0.5 unit at site 16-2 which was the lone site in full attainment in 2020. The macroinvertebrate mIBI easily met its biocriterion with most values far surpassing the General Use threshold.

The Area of Degradation and Area of Attainment Values (ADV/AAV; ; Yoder et al. 2005, 2019) were used to quantify the extent and severity of biological impairment and the extent of changes that have been taken place in the upper Des Plaines mainstem 2016, 2018, 2020, and 2022. The ADV/AAV is calculated individually for each index and was done here for the fIBI and mIBI (Figure 29) and by separating the upper 10 mile habitat and hydrologically modified reach from the remainder of the mainstem downstream to the Lake-Cook Co. line with the upstream boundary of the lower reach at the confluence with Mill Creek and the progressive entry of significant volumes of treated wastewater downstream. The miles of non-attainment of the General Use for aquatic life in the upper modified reach of the mainstem was essentially unchanged in 2022 compared to all prior years (Figure 28). It continues to reflect the enduring chemical, hydrological, and habitat alterations in this reach. The miles of non-attainment in the

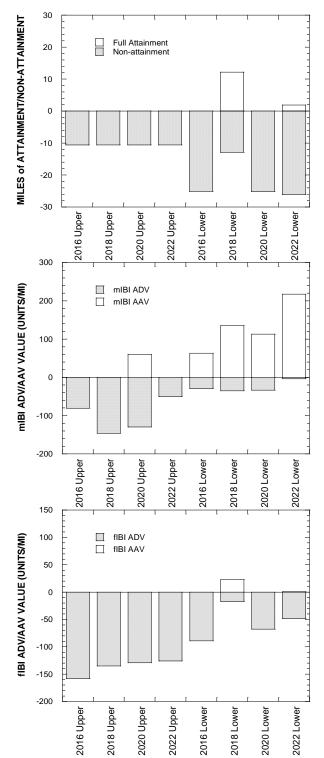


Figure 29. Area of Degradation (ADV; cross hatched) and Area of Attainment (AAV; open shading) values in the upper reach and remaining lower reach of the upper Des Plaines River in 2016, 2018, 2020, and 2022 (upper and middle panels). The miles of full and non-attainment appear in the lower

lower reach was unchanged from 2020 and 2016 with 2018 having about one-half than in 2020 and 2022. Full attainment was the highest in 2018 which was reduced in 2020, but less so in 2022. The ADV/AAV values for the mIBI and fIBI are improving, but in different ways and with different trajectories.

The mIBI ADVs declined (improved) in 2022, but with a zero ADV meaning that no mIBIs attained their General Use biocriterion. The mIBI ADVs in the lower reach have improved especially in 2022. These improvements in the ADV were accompanied by substantial increases in the AAV which means that mIBI values are increasing along the entire reach.

The fIBI ADVs in the upper reach have lessened somewhat, but with no corresponding AAVS continue to show the persistent and severe non-attainment with consistently observed poor fIBI values. The lower reach showed an overall decrease (improvement) in the fIBI ADVs from 2016 through 2022, but without a consistent showing of AAVs that would accompany fIBI values above the General Use biocriterion. The overall trajectory is unchanged in the modified upper reach and a continuing improvement in the lower reach from 2016.

NE Illinois IPS thresholds for water quality, habitat, and land use attributes were used in concert with other variables to determine causes of impairment. Having these thresholds across five narrative categories (excellent, good, fair, poor, and very poor) provides a graded approach to the assignment of causes and sources for impairments of the Illinois General Use for aquatic life. These tools were integrated with previously used approaches and indicators to assign weighted causes associated with the biological impairments observed in 2022 the same as was done in 2020.

The biological criteria for fish and macroinvertebrates used by Illinois EPA establish the thresholds by which impaired sites and reaches are determined. The assignment of causes in this analysis generally attempts to follow the overall intent of the Illinois Integrated Report (IEPA 2022) assessment guidelines, but is supplemented by the more extensive biological effect thresholds provided by the IPS (MBI 2023a). The delineation of causes and sources was based on integrating and synthesizing the preceding analyses of categorical and parameter-specific stressor threshold exceedances. The most influential of these are included in Table 24 along with the fish and macroinvertebrate IBI scores. Habitat alteration is represented by the QHEI and the QHEI modified:good attributes ratio, D.O. includes the minimum measured by Datasondes, the effect of nutrient enrichment by the diel D.O. swing narrative, the nutrient enrichment effect status, new IPS chemical threshold exceedances for water and sediment, and biological response signatures for organic enrichment and toxic tolerant indicators. The rationale for listing the predominant causal categories in 2022 follows:

- Macro Habitat Related (94 observations (64 in 2020); weighted frequency of 47.3% [39.5% in 2020]) – including the number of high influence or moderate influence poor or good attributes in the QHEI attributes matrix (Table 19), a fair, poor, or very poor QHEI score, or an IPS habitat metric;
- Organic/Nutrient Enrichment (35 observations [66 in 2020]; weighted frequency of 13.9% [36.5% in 2020) includes ammonia-N, total P, nitrate-N, or TKN median/mean value exceedance of IPS fair, poor, or very poor thresholds (Table 7), and any fair, poor, or very poor organic enrichment response signature (Tables 21 and 23);
- **D.O. Related** (31 observations [22 in 2020]; weighted frequency of 17.6% [13.8% in 2020]) includes any fair, poor, or very poor maximum or minimum D.O. or diel D.O. swing from continuous measurements (Table 15).
- **Urban Related** (47 observations [26 in 2020]; weighted frequency of 21.0% [10.2% in 2020]) includes any chloride, conductivity, or TSS median value exceedance of IPS fair, poor, or very poor thresholds in Table 10 and any IPS derived urban land use variable exceeding a fair, poor, or very poor threshold.
- Toxics (1 observation [0 in 2020]; weighted frequency 0.2% [0.0% in 2020]) any exceedance of Illinois WQC or IPS fair, poor, or very poor thresholds for a toxic compound (none recorded) or any toxic response signature (Table 21 and 23).

Macro Habitat Related at 47.3% was the most pervasive cause followed by Urban Related causes at 21.0% then by D.O. related issues at 17.6% and then by Organic/Nutrient Enrichment at 13.9% based on the weighted frequency of each. Each category had poor and very poor threshold exceedances that were primarily observed in the modified upper reach upstream from the Wetland Research Riffle and the confluence with Mill Creek. Fair exceedances included more parameters and stressors and were the most frequently observed in the middle and lower reaches of the mainstem with fewer poor and very poor exceedances.

Table 24. Key chemical, physical, and biological response indicators of impairment observed at each site in the Upper Des Plaines River study area in 2022. The causes associated with biological impairments are drawn from analyses of habitat, nutrient effects, chemical IPS and other threshold exceedances, sediment chemical IPS exceedances, and biological response signatures. Causes of impairment are classified as fair, poor, or very poor in accordance with the exceedance of corresponding thresholds. See footnotes for table references and biological, physical, and chemical threshold intervals. IPS restorability score are provided for non- and partially supporting sites and susceptibility and threat scores are provided for fully supporting sites. A glossary of causes is at the bottom.

																	2022 Causes	s by IPS Stress	or Threshold Narrative Category					·	
	River	Drain-ag Area					AQLU	QHEI Modified:	Max. D.O.			Overall Enrich-ment	>Poor Chemical	%Organic Enrich-ment	%Toxic Tolerant		- 1		1					Suscept- ibility Score	
Site ID	Mile	(sq. mi.	i.) fIBI	miE	ві і О	HEI	Status	Good Ratio	(Sonde)	(Sonde)	Swing	Status	Threshold	Signatures	Signatures	Very Poor ¹ Des Plair	Poor ¹	_	Fair ¹		Threats	2022 Sources	100)	(0-100)	100)
13-6	109.30	123.7	7 30.5	37.	.1 49	9.00 N	Non-Fair	4.00	18.29	1.72	11.42	Highly Enriched	1	39.6	0.3	Substr; Low D.O.; D.O.Swing; Max. D.O.	Imperv-30C; QHEI; Organic enrich.; Good QHEI attr.; Poor QHEI attr.	Chan; Chlori	ide; TP			Altered Flow; Habitat	57.7		
13-5	106.60	137.3	3 26.5	37.	.2 35	5.75 N	Non-Fair	9.00	11.00	2.59	6.81	Highly Enriched	1	20.8	1.5	Substr; Chan; D.O. Swing; QHEI Ratio; TSS; Good QHEI attr.	Imperv-30C; QHEI; Low D.O.; Organic enrich.	n. Imperv-500r	m;Imperv-30; Chloride; Organic enrich.			Altered Flow; Habitat	51.49		
13-4	102.90	145.6	5 28.0	32.	.7 46	5.00 N	Non-Fair	4.00	8.97	3.66	5.08	Highly Enriched	1	19.0	0.4	Substr; Organic enrich.	QHEI; Chan; Low D.O.; D.O. Swing; QHEI Ratio; Good QHEI attr.; Poor QHEI attr.	Chloride; O	rganic enrich.			Altered Flow; Habitat	54.71		
13-18	99.72	212.9	23.5	31.	.5 38	3.00 N	Non-Fair	4.00	12.69	5.77	5.58	Enriched	1	43.7	2.3	Substr; Chan;	QHEI; D.O. Swing; Organic enrich.; QHEI ratio; Good QHEI attr.; Poor QHEI attr.	TKN; Chlorid	de; Low D.O.; Max. D.O.			Altered Flow; Habitat	51.82		
13-19	99.30	213.2	2 37.0	33.	.1 74	1.75 N	Non-Fair	0.71	8.49	3.06	3.39	Likely Nutrients	1	56.8	4.2		Low D.O.; Organic enrich.; Poor QHEI attr.;		r; Chan; Chloride; Good QHEI attr.			Habitat Modification,	70.87	!	
13-3	98.70	220.3	3 32.5	42.	.1 72	2.75	Partial	0.57	10.82	1.52	9.30	Enriched Likely	2	16.6	5.5	Low D.O.; D.O. Swing	Chloride; Poor QHEI attr.	Imperv-500r Good QHEI a	m; TKN; QHEI; Chan; Conduct; Organic enrich.: attr.	Import FOOr- N	itrate; Chloride; Low D.O.; D.O.	Upstream Flow & Urban NPS	66.41		
13-2	96.82	225.4	43.5	46.	.2 78	3.25	Full	0.22	10.64	5.55	4.89	Nutrients	1	23.8	1.3					Swing	; TKN; QHEI; Substr; Chan;			100	90
13-1	94.20	232.0	43.0	54.	.9 66	5.00	Full	1.75	15.81	3.37	8.50	Nutrients	2	7.7	4.2						de; Low D.O.; D.O. Swing			91.12	80
13-16	90.60	253.8	3 38.0	60.	.1 70	0.50	Partial	0.83				Not Nutrients	1	4.2	5.8	Nitrate;	Chloride; Poor QHEI attr.		m;TP; QHEI; Substr; Conduct;; Good QHEI attr.			Urban NPS, WWTP	65.99		
16-6	87.10	261.4	1 38.0	69.	.4 69	9.50	Partial	1.20	9.53	4.14	4.91	Not Nutrients	1	6.3	7.8		Chloride; Poor QHEI attr.	attr.;	Low D.O.; D.O. Swing; Nitrate; TP; Good QHEI			Urban NPS, WWTP	69.54		
16-7	84.60	266.5	5 38.0	60.	.1 75	5.25	Partial	0.57				Not Nutrients	1	11.0	7.6		Chloride; Nitrate; Poor QHEI attr.	Good QHEI a				Urban NPS, WWTP	68.32		
16-5	83.60	268.1	1 <mark>33.0</mark>	48.	.2 60	0.25	Partial	2.67	12.87	4.17	7.87	Likely Nutrients	1	10.2	11.2	Poor QHEI attr.	Chloride; Good QHEI attr.;		m;Imperv-30;TP; Nitrate; QHEI; Substr; Chan; w D.O.; D.O. Swing; Toxics; Max D.O.			Urban NPS, WWTP	59.17		
16-8	82.90	268.9	ə <u>33.0</u>	56.	.0 61	L.00	Partial	1.75				Not Nutrients	1	5.0	4.0	Chloride; Poor QHEI attr.	Nitrate; Good QHEI attr.;	Imperv-500r	m; Nitrate; QHEI; Substr; Chan; Conduct; TP			Urban NPS, WWTP	60.15	!	
16-4	80.00	273.2	2 32.5	65.	.8 67	7.00	Partial	1.17	17.03	3.69	3.87	Likely Nutrients	2	9.4	4.0	Max. D.O.; Poor QHEI attr.	Chloride; Low D.O.; D.O. Swing; Nitrate	Chan; Condu	m;Imperv-30;Imperv-30C; Nitrate; QHEI; Substr; uct; TSS; Good QHEI attr.;			Urban NPS, WWTP, Habitat	66.04		
16-3	76.70	314.7	7 34.5	48.	.4 61	L.75	Partial	2.33	11.16	4.52	3.70	Not Nutrients	2	11.8	1.8	TSS; Poor QHEI attr.	Chloride; Nitrate; Good QHEI attr.;	ТР	El; Substr; Chan; Conduct; Low D.O.; D.O. Swing;			Urban NPS, WWTP, Habitat	73.44		
16-2	75.40	324.0	0 40. 9	61.	.3 59	9.25	Partial	2.67	13.14	4.66	8.26	Likely Nutrients	1	12.7	2.1	Poor QHEI attr.	Imperv-30;Imperv-30C; Chan; Chloride; Good QHEI attr.;	Swing; Max	m; Nitrate; QHEI; Substr; Conduct; Low D.O.; D.O. D.O.			Urban NPS, WWTP, Habitat	59.33		
16-1	71.70	358.7	7 36.0	53.	.8 71	L.00	Partial	1.50	17.77	3.67	14.10	Likely Nutrients	2	7.9	1.0	Chloride; Max. D.O.	Low D.O.; D.O. Swing; Good QHEI attr.; Poor QHEI attr.	Imperv-500r	m; Chan; Conduct; TSS;			Urban NPS, WWTP, Habitat	55.81		
	1	T										Likely				Mill C		1				1			
11-2	1.71	62.3	30.0	44.	.7 83	3.75	Partial	0.00	7.81	6.67	1.07	Nutrients	0	14.2	0.6		Chloride;	TKN; Chlorid	de; TSS			NPS	84.25	ا ا	
		1								1						North M Substr; TSS; QHEI ratio; Chloride;	ill Creek								
10-7							Non-Fair	11.00				Enriched	0	27.6	0.3	Good QHEI attr.; Poor QHEI attr.	QHEI; Chan; QHEI; Substr; DO Swing; Good QHEI attr.;	TKN; Organio				Urban NPS Habitat	73.85		
10-1	1.10	31.9					lon-Poor	2.33	13.53	6.78	6.40	Enriched	1	6.7	2.9	Acronym	Poor OHEI attr.	TP; TKN; Cha	an; Chloride; Nitrate; Max D.O. Description	Acronym	Description	Modification.	80.63		
		Excellent		>7:		34.5	FULL	<0.50	<10.36	>6.9	<2.0	Not Nutrients	None	<5	0			h Mod. Attr. d QHEI Attr.	NumberHigh Influence Modified QHEI Attributes Number of Good Habitat Attributes	Conduct Toxicity	Specific conductivity Exceedance of Toxic Biological Signature		Very High	Very Low	Very Low
Na	rrative	Good	<u>></u> 41	_	.8 >7		FULL						None	<15	>1.3	Imperv-30 Imprevious surfa	ace 30 m buffer Poor	or QHEI Attr.	Number if Modified Habitat Attributes	Org. Enrich.	Exceedance of Organic Enrichment Biologic	cal Signature	High	Low	Low
Thre	esholds	Fair	<u>></u> 30	_			PARTIAL	<u>></u> 2.00	<14.2	>4.0			<u><</u> 1	<u>></u> 15	>3.0			Chloride Low D.O.	Chloride concentration in mg/L Minium Dissolved Oxygen in mg/L	TSS TKN	Total suspended solids Total Kjeldahl nitrogen		Moderate		Moderate
		Poor	<u>></u> 15	<29	9 <	50.1 N	NON-Fair	<u>></u> 4.00	<16.3	>2.0	<6.5	Enriched	<u><</u> 3	<u>≥</u> 35	>10	Chan Channel condition		Max. D.O.	Maximum Dissolved Oxygen in mg/L	TP	Total phosphorus		Low	High	High
		Very Poo	or <15	<1	5 <	25.0 N	NON-Poor	<u>></u> 6.00	<u>≥</u> 16.3	<2.0	<u>≥6.5</u>	Highly Enriched	>3	>60	>20	Substr Substrate condit	ION TROM QHEI D.C	.O. Swing	Width of Diel D.O. Variation in 24 Hrs.	Nitrate	Nitrate as N		Very Low	Very High	Very High
¹ IPS de	rived very p	poor, poor,	r, and fair c	auses ass	signed by	y weightii	ing the stres	isor rank * FIT f	factor - see App	pendix D; very p	poor causes	rank >8-10, poor c	auses rank >6-8, fa	iir causes rank >4-6; c	other stressor ran	kings are described throughout the report.									

Only a few elevated levels of Nitrate-N were in the poor and very poor ranges with most along with total P most frequently in the fair range. These were primarily observed in the effluent influenced reaches of the middle and lower mainstem. Urban related causes exceeding mostly fair thresholds occurred mostly in the middle and lower mainstem, but poor exceedances of the Impervious Cover-30 meter buffer occurred at the two upstream most sites and poor and a few poor exceedances of chloride occurred throughout the study area. The differences between 2022 and 2020 were for the order of the causal categories after Macrohabitat Related changing and the former increasing in terms of the weighted frequency.

The introduction of large volumes of treated municipal wastewater to the mainstem downstream from the upper modified reach continues to benefit the Upper Des Plaines River and aides biological condition by offsetting detrimental impacts of pollution that is exported downstream from the modified upper reach of the mainstem. The biological results downstream from the entry of treated wastewater at site 13-3 were better both in terms of AQLU status and the fIBI and mIBI scores than at the four upstream most sites that were in nonfair in 2022 and have been and non-poor in prior years. Even with the lower fIBI scores in 2020, the longitudinal pattern was the same – consistent incremental improvement downstream from the Wetland Research riffle and seemingly independent of the entry of large volumes of treated wastewater. This and the accumulation of more poor and very poor exceedances of IPS and other thresholds in the upper modified reach points to nonpoint sources being exacerbated by the habitat and hydrological modifications in the upper watershed as the major limiting sources to aquatic life. After observing this phenomenon over four survey years spanning 2016-22 and examining the differences in the annual flow regime over that same period suggests that periodic elevated flow events that approach or exceed flood stage export most of the upstream pollution out of the study area. However, spates of less elevated high flows act to deposit this pollution in the lower reaches of the study area. Besides the revelations of the analysis of the permanent DRWW Datasondes, the observations of nonpoint source derived muck substrates by the fish crew at site 16-2 during the first sampling pass following one of these events, but finding different conditions during the second pass later in the index period was reflected by a 10 point spread in the fIBI score and was the difference between non and full attainment of the General Use for aquatic life in 2022

Two sites (13-2 and 13-1) were in full attainment of the General Use for aquatic life in 2022, up from one site in 2020, but down from the five sites in 2018, all within the effluent dominated reach of the study area. Partial attainment was observed in the reach between these sites and site 16-1 at the lower terminus of the study area. Each of these sites were limited by the non-attainment of the fIBI biocriterion with most scores marginally lower than in 2018 and similar to 2020. Four sites immediately upstream and downstream from the Libertyville and Mundelein WWTPs missed full attainment by only 3.0 units and at site 16-2 by 0.5 units. The discovery of Round Goby at the four (4) downstream most sites in 2020 and their persistence in 2022 still adds an unknown factor for the aquatic assemblages. There was no apparent movement upstream in 2022, but this bears watching in the future as it represent the furthest upstream ingress in the Des Plaines basin (Sarver 2022).

References

- Bertrand, B. 1984. Des Plaines River Basin fisheries assessment. Illinois Dept. of Conservation, Div. of Fish and Wildlife Resources, Northern Streams Program. 100-11-84. 44 pp.
- Bilger, E.E., M.J. Dreslik, and C.A. Phillips. 2016. Biotic integrity of macroinvertebrate communities along the Illinois routes 53 & 120 corridor. ITHA RR-14-4228. Prairie Research Institute, Illinois Natural History Survey. Champaign, IL. 27 pp.
- Bland, J.K. 2013. How do you spell success? The rare fish variety, that is. Part I: Grading success in rearing threatened and endangered species. American Currents 38(4): 11-22.
- Day, D. M. 1991. The Des Plaines River: Monitoring the Fish Resources of an Urban River (1978-1991) Streams Program, Illinois Department of Conservation, Aledo, IL.
- Des Plaines River Watershed Workgroup (DRWW). 2018. 2018 Monitoring Strategy for the Des Plaines River Watershed. Lake County, IL. DRWW, 500 W. Winchester Rd., Libertyville, IL. 7 pp. <u>http://www.drww.org/plans/reports</u>.
- Geosyntec. 2023. Nutrient Assessment Reduction Plan for The Upper Des Plaines River. Project MOW5554. Prepared for Des Plaines River Watershed Workgroup, Libertyville, IL. 46 pp. + appendices.
- Healy, R. W. 1979. River mileages and drainage areas for Illinois streams- Volume 1, Illinois except Illinois River Basin. U.S. Geological Survey, Water Resources Investigations 79- 110.
- Heidinger, R. C.1989. Fishes in the Illinois portion of the upper Des Plaines River. Transactions of the Illinois Academy of Science 82: 85-96.
- Illinois DNR. 2010a. Rivers and Streams Fisheries Data Set: Fish Collection Procedures (Electrofishing). Fisheries Manual of Operations Fish Collection Procedures (Electrofishing). Illinois DNR/Illinois NHS. Springfield, IL. 2 pp.
- Illinois DNR. 2010b. Rivers and Streams Fisheries Data Set: Field Sampling Protocols For Rivers and Streams. Fisheries Manual of Operations Fish Collection Procedures (Electrofishing). Illinois DNR/Illinois NHS. Springfield, IL. 9 pp.
- Illinois EPA. 2022. Illinois Integrated Water Quality Report and Section 303(d) List, 2020/2022. Clean Water Act Sections 303(d), 305(b) and 314. Water Resource Assessment Information and List of Impaired Waters. Volume I: Surface Water. Bureau of Water, Springfield, IL. 58 pp. + appendices.

- Illinois EPA. 2014a. Illinois Water Monitoring Strategy 2015-2020. Bureau of Water. Springfield, IL. 138 pp.
- Illinois EPA. 2012a. Surface Water Section. Standard Operating Procedure for Stream Water Quality Sample Monitoring. Document Control No. 184. IEPA BOW SOP012-01-0512. Revision No. 1. 16 pp.
- Illinois EPA. 2011a. Standard Operating Procedure for Calibration and Use of Hydrolab MiniSonde 5. Surface Water Section, Document Control No. 180. IEPA BOW SOP010-00-1111. Revision No. 0. Springfield, IL. 8 pp.
- Illinois EPA. 2011b. Standard Operating Procedure for Surficial Sediment Collection. Surface Water Section. Document Control No. 174. IEPA BOW SOP008-00-1111. Revision No. 0. 8 pp.
- Illinois EPA. 2011c. Standard Operating Procedure for Method to Collect Aquatic Macroinvertebrates from Wadeable Streams for Biotic Integrity Assessments. Surface Water Section. Document Control No. 168. IEPA BOW SOP002-00-1111. Revision No. 0. 8 pp.
- Illinois EPA. 2011d. Methods Utilized to Determine the Types and Amounts of Pertinent Macroinvertebrate Habitats in Perennial Wadeable Streams for 20-Jab Allocation. Surface Water Section. Document Control No. 177. IEPA BOW ID003-00-1111. Revision No. 0. 6 pp.
- Illinois EPA. 2011e. Standard Operating Procedure for Sample Processing for the Macroinvertebrate Index of Biotic Integrity (mIBI). Surface Water Section. Document Control No. 167. IEPA BOW SOP001-00-1111. Revision No. 0. 14 pp.
- Illinois EPA. 2011f. Macroinvertebrate Tolerance List and Functional Feeding Group Classification. Surface Water Section. Document Control No. 176. IEPA BOW ID002-00-1111. Revision No. 0. 75 pp.
- Illinois EPA. 2011g. Genus-List: Macroinvertebrate-Index of Biotic Integrity (m-IBI) Tolerance List and Functional Feeding Group Classification. Surface Water Section. Document Control No. 178. IEPA BOW ID004-00-1111. Revision No. 0. 31 pp.
- Illinois DNR. 2010a. Rivers and Streams Fisheries Data Set: Fish Collection Procedures (Electrofishing). Fisheries Manual of Operations Fish Collection Procedures (Electrofishing). Illinois DNR/Illinois NHS. Springfield, IL. 2 pp.
- Illinois DNR. 2010b. Rivers and Streams Fisheries Data Set: Field Sampling Protocols For Rivers and Streams. Fisheries Manual of Operations Fish Collection Procedures (Electrofishing). Illinois DNR/Illinois NHS. Springfield, IL. 9 pp.

- Illinois EPA. 2006. Recommendations for Illinois EPA users on how to interpret or record information relevant to scoring the Qualitative Habitat Evaluation Index. Surface Water Section, Springfield, IL. 8 pp.
- Kaushal, S.S., Groffman, P.M., Likens, G.E., Belt, K.T., Stack, W.P., Kelly, V.R., Band, L.E., and Fisher, G.T. 2005. Increased salinization of fresh water in the northeastern United States. Proc. Natl. Acad. Sci. 102(38):13517-13520.
- Kelly, W.R., S.V. Panno, and K. Hackley. 2012. The Sources, Distribution, and Trends of Chloride in the Waters of Illinois. Illinois State Water Survey, Prairie Research Institute, University of Illinois at Urbana-Champaign.
- Kelly, W.R. 2008. Long-term trends in chloride concentrations in shallow aquifers near Chicago. Ground Water. 46(5):772-781.
- Lake Co. Stormwater Management Commission (LCSMC). 2018. Des Plaines River Watershed Based Plan. Lake Co. Stormwater Management Commission, 500 W Winchester Road, Libertyville, Illinois 60048. 552 pp. + appendices.
- Langbein, J. R. and H. L. Wright. 1976. Inventory of the fishes of the Des Plaines River Basin for1974. Illinois Department of Conservation, 37 pp.
- Mazor, R.D., M. Sutula, S. Theroux, M. Beck, P.R. Ode. 2022. Eutrophication thresholds associated with protection of biological integrity in California wadeable streams. Ecological Indicators 142 (2022) 109180.
- Midwest Biodiversity Institute (MBI). 2023a. Integrated Prioritization System (IPS) for Northeastern Illinois: Technical Documentation and Atlas of Stressor Relationships. Technical Report MBI/2020-5-10. Project Number 10180900. Columbus, OH 43221-0561. 149 pp. + appendices.
- Midwest Biodiversity Institute (MBI). 2023b. Relationships and Thresholds for Continuous Dissolved Oxygen Variables, Nutrient Effects, and Biological Attributes in Northeast Illinois Rivers and Streams. Technical Report MBI/2023-7-15. Submitted to DuPage River Salt Creek Workgroup, Naperville, IL. 44 pp. + appendices.
- Midwest Biodiversity Institute (MBI). 2021. Biological and Water Quality Assessment of Upper Des Plaines River Subwatersheds: Year 3 Rotation 2019. Mill Creek, Bull Creek, and Des Plaines River Tributary Subwatersheds. Lake County, Illinois. Technical Report MBI/2021-7-7. Columbus, OH 43221-0651. 76 pp. + appendices.
- Midwest Biodiversity Institute (MBI). 2020b. Biological and Water Quality Assessment of Upper Des Plaines River: Year 2 Rotation 2018. Mainstem and Selected Tributaries. Lake

County, Illinois. Technical Report MBI/2020-1-2. Columbus, OH 43221-0561. 65 pp. + appendices.

- Midwest Biodiversity Institute (MBI). 2018. Biological and Water Quality Assessment of Upper Des Plaines River Subwatersheds: Year 1 Rotation 2017. Indian, Buffalo, and Aptakisic Creek Subwatersheds. Lake County, Illinois. Technical Report MBI/2018-12-10. Columbus, OH 43221-0561. 59 pp. + appendices.
- Midwest Biodiversity Institute (MBI). 2017. Biological and Water Quality Assessment of the Upper Des Plaines River and Tributaries 2016. Lake County, Illinois. Technical Report MBI/2017-8-7. Columbus, OH 43221-0561. 101 pp. + appendices.
- Midwest Biodiversity Institute (MBI). 2015. Integrated Prioritization System (IPS) Documentation and Atlas of Biological Stressor Relationships for Southwest Ohio. Technical Report MBI/2015-12-15. MSD Project Number 10180900. Columbus, OH 43221-0561. 32 pp. + appendices. www.midwestbiodiversityinst.org/publications/
- Miltner, R.J. 2018. Eutrophication endpoints for large rivers in Ohio, USA. Environ. Monit. Assess. 190: 55
- Miltner, R.J., R.F. Mueller, C.O. Yoder, and E.T. Rankin. 2010. Priority rankings based on estimated restorability for stream segments in the DuPage River and Salt Creek watersheds. Technical Report MBI/2010-11-6. Report to the DuPage River Salt Creek Working Group, Naperville, IL. 63 pp. (available at <u>http://drscw.org/wp/projectidentification- andprioritization-system/</u>).
- Ohio Environmental Protection Agency. 2015a. Biological criteria for the protection of aquatic life (revised June 26, 2015). Volume III: Standardized biological field sampling and laboratory methods for assessing fish and macroinvertebrate communities. Tech. Rept. EAS/2015-06-01. Division of Surface Water, Ecological Assessment Section, Columbus, Ohio. 66 pp. <u>https://www.epa.ohio.gov/dsw/bioassess/BioCriteriaProtAqLife</u>.
- Ohio EPA. 2015b. Draft Ohio Draft Stream Nutrient Assessment Procedure (SNAP). Division of Surface Water, Columbus, OH. Nutrients_TAG_Recommendations_12-4-2015_GO4- Final Draft - 4828-0819-7931.1.pdf.
 http://epa.ohio.gov/dsw/wqs/NutrientReduction.aspx#146064467-tag.
- Ohio Environmental Protection Agency. 2006. Methods for assessing habitat in flowing waters: using the qualitative habitat evaluation index (QHEI). Division of Surface Water, Ecological Assessment Section, Columbus, OH. 23 pp.
- Ohio EPA. 1999. Association between nutrients, habitat, and the aquatic biota in Ohio Rivers and streams. Ohio EPA Technical Bulletin MAS/1999-1-1. Jan. 7, 1999.

- Ohio Environmental Protection Agency. 1996. Ohio EPA's guide to DELT anomalies (deformities, erosions, lesions, and tumors). Division of Surface Water, Ecological Assessment Section, Columbus, OH. 19 pp.
- Page, L. M., H. Espinosa-Pérez, L. T. Findley, C. R. Gilbert, R. N. Lea, N. E. Mandrak, R. L., Mayden, and J. S. Nelson. 2013. Common and scientific names of fishes from the United States, Canada, and Mexico, 7th edition. American Fisheries Society, Special Publication 34, Bethesda, Maryland. 384 pp.
- Pescitelli S. M. and R. C. Rung. 2010b. Evaluation of the Des Plaines River Ecosystem Restoration Project: Summary of Pre-project Fish Sampling 1998 – 2010. Illinois Department of Natural Resources, Division of Fisheries Streams Program, Plano, IL.
- Rankin, E. T. 1995. The use of habitat assessments in water resource management programs, pages 181-208. in W. Davis and T. Simon (eds.). Biological Assessment and Criteria: Tools for Water Resource Planning and Decision Making. Lewis Publishers, Boca Raton, FL.
- Rankin, E.T. 1989. The Qualitative Habitat Evaluation Index (QHEI): Rationale, Methods, and Application. Ohio EPA, Division of Water Quality Planning and Assessment, Ecological Analysis Section, Columbus, Ohio.
- Sanders, R. S., R. J. Miltner, C. O. Yoder, and E. T. Rankin. 1999. The use of external deformities, erosions, lesions, and tumors (DELT anomalies) in fish assemblages for characterizing aquatic resources: a case study of seven Ohio streams, pages 225-248. In T.P. Simon (ed.), Assessing the Sustainability and Biological Integrity of Water Resources Using Fish Communities. CRC Press, Boca Raton, FL.
- Sarver, M.A. 2022. Round Goby (Neogobius melanostomus) Introduction and Range Expansion in the Highly Anthropogenic Influenced Watershed of the Des Plaines River, Illinois, USA. Trans. Ill. Acad. Sci. Volume 115, pp. 21-30.
- Smogor, R. 2000. Draft Manual for Calculating Index of Biotic Integrity Scores for Streams in Illinois, August 2000. Prepared for: Illinois Environmental Protection Agency and Illinois Department of Natural Resources. 23 pp.
- State of Illinois. 2018. Illinois nutrient loss reduction strategy. Biennial report 2015-17. Illinois Dept. of Agriculture, Springfield, IL. 83 pp.
- U.S. EPA (Environmental Protection Agency). 2012. 2012 Recreational Water Quality Criteria. Office of Water EPA - 820-F-12-061, 4305T, December 2012. Washington D.C.
- U.S. EPA (Environmental Protection Agency). 2011. A Field-Based Aquatic Life Benchmark for Conductivity in Central Appalachian Streams. Office of Research and Development, National Center for Environmental Assessment, Washington, DC. EPA/600/R-10/023F. 276 pp.

- Woods, A., J.M. Omernik, C.S. Brockman, T.D. Gerber, W.D. Hosteter, and S.H. Azevedo. 1995. Ecoregions of Ohio and Indiana. U.S. EPA, Corvallis, OR. 2 pp.
- YSI Incorporated. 2012. 6-Series Multiparameter Water Quality Sondes User Manual. 6-Series: 6600 V2, 6600EDS V2, 6920 V2, 6820 V2, 600 OMS V2, 600XL, 600XLM, 600LS, 600R, and 600QS. Environmental Monitoring Systems Operations Manual. Item # 069300, Revision J. Yellow Springs, OH. 379 pp.
- YSI Incorporated. 2017. EXO User Manual. Item# 603789REF, Revision G. Yellow Springs. OH. 154 pp.
- Zheng, L. and Paul, M.J. 2009. Effects of Eutrophication on Stream Ecosystems. Tetratech, Inc. n-steps. tetratech-ffx. com/PDF&otherFiles/literature_review/Eutrophication% 20effects% 20on% 20streams.pdf.

APPENDIX A

Upper Des Plaines 2022 Fish Assemblage Data

A1: Fish Index of Biotic Integrity (fIBI) Metrics & Scores 2022 A-2: Fish Species Grand Des Plaines River Mainstem (all sites combined) 2022 A-3: Fish Species Grand Mill Creek/North Mill Creek (all sites combined) 2022 A-4: Fish Species by Sampling Event (2022)

									Nu	mber of				Perc					
Site ID	River Mile	Туре	Date	DA sq mi	Wetted Width (ft)	IL IBI Reg.	Native species	Sunfish species		Intolerant species		Minnow species	Mineral Substrate Spawners	Tolerant Fish (as Species)	Generalist Feeders	Specialized Benthic Invert- ivores	Rel.No. /(0.3km)		Modifie Iwb
	DESPL	AINES	RIVE	R - (95	656)														
Yea	r: 2022																		
13-6	109.30	P 06/2	4/2022	123.6	84.2	3	22(5)	7(6)	2(2)	2(2)	3(2)	6(4)	2(1)	27(5)	72(4)	1(1)	1172	32.0	8.3
13-6	109.30	P 09/2	8/2022	123.6	84.2	3	20(4)	5(5)	2(2)	1(1)	3(2)	5(3)	2(1)	20(5)	60(5)	1(1)	584	29.0	8.6
13-5	106.60	P 06/2	4/2022	137.2	86.1	3	17(3)	7(6)	1(1)	1(1)	1(1)	5(3)	3(1)	24(5)	58(6)	0(0)	378	27.0	7.4
13-5	106.60	P 09/2	8/2022	137.2	86.1	3	17(3)	5(5)	1(1)	1(1)	1(1)	4(3)	1(1)	18(6)	62(5)	0(0)	498	26.0	7.4
13-4	102.90	P 06/2	4/2022	145.5	87.2	3	20(4)	8(6)	2(2)	1(1)	1(1)	3(2)	3(1)	30(5)	48(6)	0(0)	374	28.0	8.4
13-4	102.90	P 09/2	8/2022	145.5	87.2	3	18(4)	7(6)	2(2)	1(1)	1(1)	2(2)	4(1)	33(5)	59(6)	0(0)	448	28.0	8.8
13-19	99.72	P 06/2	6/2022	213.1	94.2	3	24(5)	8(6)	2(2)	3(3)	3(2)	5(4)	25(4)	25(5)	53(6)	3(1)	750	38.0	9.7
13-19	99.72	P 10/0	1/2022	213.1	94.2	3	26(5)	8(6)	2(2)	3(3)	3(2)	4(3)	20(4)	19(5)	63(5)	0(1)	1372	36.0	9.8
13-18	99.30	P 06/2	4/2022	212.8	94.2	3	13(2)	6(6)	1(1)	1(1)	1(1)	1(1)	6(2)	15(6)	73(4)	0(0)	252	24.0	7.9
13-18	99.30	P 09/2	8/2022	212.8	94.2	3	15(3)	4(4)	1(1)	1(1)	2(2)	2(2)	4(1)	20(5)	82(3)	0(1)	408	23.0	8.1
13-3	98.70	P 06/2	5/2022	220.2	94.8	3	19(4)	6(6)	2(2)	3(3)	2(2)	3(2)	18(3)	26(5)	70(4)	1(1)	680	32.0	8.2
13-3	98.70	P 10/0	1/2022	220.2	94.8	3	24(5)	6(6)	2(2)	3(3)	3(2)	6(4)	12(2)	25(5)	76(3)	1(1)	878	33.0	9.5
13-2	96.82	P 06/2	3/2022	225.3	95.2	3	23(5)	8(6)	2(2)	4(4)	4(3)	7(5)	42(6)	22(5)	58(6)	5(2)	468	44.0	7.8
13-2	96.82	P 10/0	1/2022	225.3	95.2	3	24(5)	6(6)	2(2)	4(4)	5(4)	7(5)	30(5)	21(5)	66(5)	4(2)	1090	43.0	9.4
13-1	94.20	P 06/2	2/2022	232.0	95.8	3	19(4)	6(6)	1(1)	3(3)	3(2)	5(4)	54(6)	21(5)	42(6)	2(1)	510	38.0	7.6
13-1	94.20	P 09/2	9/2022	232.0	95.8	3	24(5)	7(6)	2(2)	4(4)	5(4)	7(5)	58(6)	17(6)	33(6)	9(4)	684	48.0	9.5
13-16	90.60	P 06/2	2/2022	253.7	97.4	3	18(4)	6(6)	2(2)	4(4)	3(2)	5(4)	47(6)	28(5)	50(6)	2(1)	486	40.0	7.1
13-16	90.60	P 09/2	8/2022	253.7	97.4	3	17(3)	5(5)	1(1)	3(3)	2(2)	5(4)	51(6)	35(4)	40(6)	4(2)	610	36.0	8.0
16-6	87.10	P 06/2	2/2022	261.4	98.0	3	21(4)	5(5)	1(1)	3(3)	3(2)	8(5)	43(6)	24(5)	50(6)	2(1)	484	38.0	8.3

Appendix Table A-1. Fish IBI results for data collected in the Upper Des Plaines River watershed in 2022.

na - Qualitative data, Modified Iwb not applicable.

X - IBI extrapolated

 \ast - <200 Total individuals in sample

** - < 50 Total individuals in sample

• - One or more species excluded from IBI calculation.

01/08/2024

									Nu	mber of				Perc	cent				
Site ID	River Mile	Туре	Date		Wetted Width (ft)	IL IBI Reg.	Native species	Sunfish species	Sucker species	Intolerant species	Benthic Invert. species	Minnow species	Mineral Substrate Spawners	Tolerant Fish (as Species)	Generalist Feeders	Specialized Benthic Invert- ivores	Rel.No. /(0.3km)	N IBI	lodifie Iwb
6-6	87.10	P 09/	/29/2022	261.4	98.0	3	19(4)	6(6)	1(1)	3(3)	2(2)	5(4)	49(6)	32(5)	42(6)	1(1)	668	38.0	8.7
6-7	84.60	P 06/	/21/2022	266.4	98.3	3	20(4)	6(6)	2(2)	4(4)	4(3)	7(5)	21(4)	20(5)	74(4)	2(1)	666	38.0	7.3
6-7	84.60	P 09/	/27/2022	266.4	98.3	3	23(5)	6(6)	2(2)	4(4)	3(2)	7(5)	23(4)	22(5)	68(4)	3(1)	488	38.0	8.6
6-5	83.60	P 06/	/21/2022	268.0	98.4	3	16(3)	6(6)	2(2)	2(2)	2(2)	4(3)	12(2)	31(5)	77(3)	1(1)	208	29.0	7.5
6-5	83.60	P 09/	/27/2022	268.0	98.4	3	21(4)	6(6)	2(2)	4(4)	4(3)	6(4)	16(3)	24(5)	74(4)	4(2)	510	37.0	8.3
6-8	82.90	P 06/	/21/2022	268.9	98.5	3	20(4)	6(6)	2(2)	4(4)	2(2)	6(4)	11(2)	25(5)	83(3)	1(1)	312	33.0	7.4
6-8	82.90	P 09/	/27/2022	268.9	98.5	3	21(4)	7(6)	2(2)	3(3)	3(2)	4(3)	10(2)	24(5)	61(5)	1(1)	512	33.0	8.2
6-4	80.00	D 06/	/27/2022	273.2	98.8	3	17(3)	5(5)	1(1)	2(2)	2(2)	5(4)	24(4)	24(5)	67(5)	7(3)	185 *	34.0	7.5
6-4	80.00	D 09/	/30/2022	273.2	98.8	3	14(3)	6(6)	1(1)	2(2)	2(2)	3(2)	20(4)	29(5)	71(4)	4(2)	168 *	31.0	6.9
6-3	76.70	P 06/	/26/2022	314.6	101.4	3	17(3)	5(5)	2(2)	3(3)	2(2)	5(4)	12(3)	29(5)	71(4)	2(1)	260	32.0	7.3
6-3	76.70	P 10/	/02/2022	314.6	101.4	3	22(4)	7(6)	2(2)	4(4)	3(2)	5(4)	21(4)	23(5)	60(5)	3(1)	500	37.0	8.1
6-2	75.40	P 06/	/26/2022	323.9	101.9	3	18(4)	6(6)	1(1)	3(3)	3(2)	6(4)	20(4)	22(5)	71(4)	6(3)	332	36.0	7.6
6-2	75.40	P 10/	/02/2022	323.9	101.9	3	20(4)	5(5)	2(2)	4(4)	5(4)	5(4)	39(6)	25(5)	43(6)	12(5)	720	45.0	8.8
6-1	71.70	P 06/	/23/2022	358.7	103.8	3	15(3)	5(5)	1(1)	3(3)	1(1)	5(4)	25(5)	33(5)	56(6)	1(1)	244	34.0	7.8
6-1	71.70	P 09/	/30/2022	358.7	103.8	3	21(4)	6(6)	2(2)	3(3)	4(3)	5(4)	22(4)	33(5)	61(5)	4(2)	598	38.0	8.4
	MILL	CREE	K - (959	95)															
Year	r: 2022																		
1-2	1.71	D 06/	/27/2022	62.2	71.6	3	22(5)	7(6)	1(1)	2(2)	3(2)	5(3)	6(1)	27(5)	71(4)	2(1)	594	30.0	8.9
	NORT	'H MIL	LL CREE	EK - (9	5996)														
Year	r: 2022																		
0-7	11.30	E 06/	/27/2022	19.2	50.0	3	6(1)	1(2)	0(0)	0(0)	1(1)	2(2)	0(0)	50(4)	54(6)	15(6)	39 * *	22.0	
	Qualitati BI extra			d Iwb n	ot applicab	ole.				A - 2							01/0	8/2024	

Appendix Table A-1. Fish IBI results for data collected in the Upper Des Plaines River watershed in 2022.

• - One or more species excluded from IBI calculation.

Appendix Table A-1. Fish IBI results for data collected in the Upper Des Plaines River watershed in 2022.

									Nu	mber of				Perc	cent				
Site ID	River Mile	Туре	Date	DA sq mi	Wetted Width (ft)	IL IBI Reg.	Native species		Sucker	Intolerant species		Minnow species	Mineral Substrate Spawners		Generalist Feeders	Specialized Benthic Invert- ivores	Rel.No. /(0.3km)		lodified lwb
10-1	1.10	E 06	5/27/2022	31.9	59.3	3	13(3)	4(5)	1(1)	0(0)	1(1)	3(2)	0(0)	46(4)	92(1)	0(1)	514	18.0	6.9

X - IBI extrapolated

** - < 50 Total individuals in sample

na - Qualitative data, Modified Iwb not applicable.

 $[\]ast$ - <200 Total individuals in sample

^{• -} One or more species excluded from IBI calculation.

Family	Species			IEPA	Number	Number	Number/K	% by	Avg.	Biomass	% by
Code	Code	Common Name	Latin Name	Tolerance	Counted	Weighed	m	Number	Weight (g)	(Kg/km)	Weight
77	009	Bluegill Sunfish	Lepomis macrochirus	Р	1302	1286	2696	14.59	26.0	64.4	1.76
43	043	Bluntnose Minnow	Pimephales notatus	Т	1171	1157	2490	13.46	2.9	8.1	0.22
43	004	Hornyhead Chub	Nocomis biguttatus	I	1188	1178	2382	12.88	17.5	40.9	1.11
40	016	White Sucker	Catostomus commersoni	Т	891	888	1795	9.71	252.5	404.8	11.00
43	032	Spotfin Shiner	Cyprinella spiloptera		771	762	1621	8.76	3.2	4.5	0.12
77	013	Pumpkinseed Sunfish	Lepomis gibbosus	Р	403	394	879	4.75	18.9	12.5	0.34
43	001	Common Carp	Cyprinus carpio	Т	414	133	863	4.67	2674.6	2262.1	61.45
77	006	Largemouth Bass	Micropterus nigricans		305	303	633	3.42	235.7	110.3	3.00
43	022	Rosyface Shiner	Notropis rubellus	I	219	217	441	2.39	2.1	1.0	0.03
77	004	Smallmouth Bass	Micropterus dolomieui	М	216	213	431	2.33	65.3	37.3	1.01
77	008	Green Sunfish	Lepomis cyanellus	Т	222	218	429	2.32	16.1	6.3	0.17
43	034	Sand Shiner	Miniellus stramineus	М	168	168	340	1.84	2.2	0.7	0.02
77	003	Rock Bass	Ambloplites rupestris		163	162	324	1.75	84.5	18.7	0.51
54	002	Blackstripe Topminnow	Fundulus notatus		141	140	296	1.60	1.2	0.3	0.01
20	003	Gizzard Shad	Dorosoma cepedianum		131	131	262	1.42	134.3	12.8	0.35
80	011	Logperch	Percina caprodes	М	122	120	242	1.31	8.8	2.1	0.06
40	018	Spotted Sucker	Minytrema melanops		114	114	234	1.26	625.5	112.4	3.05
77	010	Orangespotted Sunfish	Lepomis humilis		94	94	225	1.21	5.0	1.0	0.03
87	001	Round Goby	Neogobius melanostomus		103	100	204	1.10	7.9	1.4	0.04
74	006	Yellow Bass	Morone mississippiensis	Р	86	85	178	0.96	40.1	8.2	0.22
47	004	Yellow Bullhead	Ameiurus natalis	Т	82	81	162	0.88	149.1	21.3	0.58
43	028	Spottail Shiner	Hudsonius hudsonius	Р	68	68	156	0.84	6.9	0.9	0.03
37	003	Northern Pike	Esox lucius		75	74	153	0.83	1059.9	155.4	4.22
77	002	Black Crappie	Pomoxis nigromaculatus		76	75	154	0.83	99.0	17.1	0.46
80	005	Blackside Darter	Percina maculata		74	72	150	0.81	4.9	0.8	0.02
47	002	Channel Catfish	Ictalurus punctatus		69	68	141	0.76	1302.5	164.3	4.46
15	001	Bowfin	Amia calva		56	54	127	0.68	1565.3	166.5	4.52
43	003	Golden Shiner	Notemigonus crysoleucas	Т	41	41	90	0.49	18.9	1.4	0.04
70	001	Brook Silverside	Labidesthes sicculus	М	35	35	81	0.44	1.1	0.1	0.00
80	014	Johnny Darter	Etheostoma nigrum		35	34	71	0.38	1.1	0.1	0.00
77	007	Warmouth Sunfish	Lepomis gulosus		21	21	44	0.24	23.3	1.2	0.03
80	001	Sauger	Sander canadensis		18	18	36	0.20	462.1	16.4	0.45
43	026	Common Shiner	Luxilus cornutus		13	13	27	0.15	12.6	0.4	0.01
77	015	Green X Bluegill Sunfish	HYBRID		14	14	28	0.15	57.3	1.6	0.04
47	008	Stonecat Madtom	Noturus flavus	I	8	8	16	0.09	36.3	0.6	0.02
34	001	Central Mudminnow	Umbra limi	Т	4	4	10	0.06	3.8	0.0	0.00
43	033	Bigmouth Shiner	Ericymba dorsalis		5	5	10	0.05	2.0	0.0	0.00

Appendix Table B-2. Total fish species collected in the Upper Des Plaines River mainstem in 2022.

Appendix	Table B-2 .	continued.	I			I	1		1		
Family Code	Species Code	Common Name	Latin Name	IEPA Tolerance	Number Counted	Number Weighed	Number/K m	% by Number	Avg. Weight (g)	Biomass (Kg/km)	% by Weight
47	013	Tadpole Madtom	Noturus gyrinus		5	5	10	0.05	2.3	0.0	0.00
10	004	Longnose Gar	Lepisosteus osseus		4	4	8	0.04	225.0	1.5	0.04
43	002	Goldfish	Carassius auratus	Т	4	4	8	0.04	129.2	0.9	0.02
43	044	Central Stoneroller	Campostoma anomalum		4	4	8	0.04	3.5	0.0	0.00
43	045	Common Carp X Goldfish	HYBRID	Т	4	4	8	0.04	1816.7	15.4	0.42
80	003	Yellow Perch	Perca flavescens		4	4	8	0.04	46.3	0.4	0.01
68	001	Pirate Perch	Aphredoderus sayanus		2	2	5	0.03	6.5	0.0	0.00
77	001	White Crappie	Pomoxis annularis		2	2	4	0.02	75.0	0.3	0.01
43	013	Creek Chub	Semotilus atromaculatus	Т	1	1	2	0.01	8.0	0.0	0.00
43	025	Striped Shiner	Luxilus chrysocephalus		1	1	2	0.01	3.0	0.0	0.00
47	006	Black Bullhead	Ameiurus melas	Р	1	1	2	0.01	300.0	0.6	0.02
47	007	Flathead Catfish	Pylodictis olivaris		1	0	2	0.01	300.0	0.0	0.00
54	002	Blackstriped Topminnow	Fundulus notatus		1	1	2	0.01	1.0	0.0	0.00
77	014	Bluegill X Pumpkinseed	HYBRID		1	1	2	0.01	35.0	0.1	0.00
77	016	Green X Pumpkinseed	HYBRID		1	1	2	0.01	20.0	0.0	0.00
77	025	Warmouth X Pumpkinseed	HYBRID		1	1	2	0.01	10.0	0.0	0.00
80	002	Walleye	Sander vitreus		1	1	2	0.01	1850.0	3.7	0.10
Тс	otals	47 species; 2 non-native spe	cies; 5 hybrids		8956	8585	18497	100.0		3680.7	100.0

		Ohio	Number	Number	Number	% by	Avg. Wt.		% by
Common Name	Latin Name	Tolerance	Counted	Weighed	/Km	Number	(g)	Kg/Km	Weight
Bluegill Sunfish	Lepomis macrochirus	Р	135	135	237.5	20.71	9.9	2.32	7.34
Bluntnose Minnow	Pimephales notatus	Т	113	113	189.5	16.52	2.7	0.52	1.65
Spotfin Shiner	Cyprinella spiloptera		98	95	165.5	14.43	3.9	0.64	2.03
White Sucker	Catostomus commersoni	Т	73	72	136.0	11.86	71.9	6.39	20.27
Green Sunfish	Lepomis cyanellus	Т	34	34	66.0	5.75	9.5	0.47	1.49
Pumpkinseed Sunfish	Lepomis gibbosus	Р	39	39	58.5	5.10	11.3	0.66	2.09
Yellow Bullhead	Ameiurus natalis	Т	38	38	57.5	5.01	74.1	1.27	4.01
Orangespotted Sunfish	Lepomis humilis		32	30	49.5	4.32	4.1	0.23	0.73
Creek Chub	Semotilus atromaculatus	Т	13	13	30.0	2.62	24.7	0.74	2.35
Hornyhead Chub	Nocomis biguttatus		14	13	21.0	1.83	16.2	0.34	1.08
Blackstripe Topminnow	Fundulus notatus		11	10	20.0	1.74	1.4	0.03	0.08
Largemouth Bass	Micropterus nigricans		10	10	17.0	1.48	54.7	0.98	3.12
Channel Catfish	Ictalurus punctatus		11	11	16.5	1.44	290.9	4.80	15.22
Yellow Perch	Perca flavescens		6	6	12.0	1.05	16.7	0.20	0.63
Johnny Darter	Etheostoma nigrum		4	4	9.5	0.83	1.0	0.01	0.03
Central Mudminnow	Umbra limi	Т	3	3	9.0	0.78	6.7	0.06	0.19
Blackside Darter	Percina maculata		6	6	9.0	0.78	3.3	0.03	0.10
Golden Shiner	Notemigonus crysoleucas	Т	5	5	7.5	0.65	18.0	0.14	0.43
Common Carp	Cyprinus carpio	Т	4	4	7.0	0.61	923.8	5.64	17.89
Rosyface Shiner	Notropis rubellus		4	4	6.0	0.52	1.5	0.01	0.03
Green X Bluegill Sunfish	HYBRID		2	2	4.0	0.35	5.0	0.02	0.06
Bowfin	Amia calva		2	2	3.0	0.26	1450.0	4.35	13.80
Fathead Minnow	Pimephales promelas	Т	1	1	3.0	0.26	3.0	0.01	0.03
Stonecat Madtom	Noturus flavus	1	2	2	3.0	0.26	25.0	0.08	0.24
Black Bullhead	Ameiurus melas	Р	1	1	2.0	0.17	90.0	0.18	0.57
Northern Pike	Esox lucius		1	1	1.5	0.13	800.0	1.20	3.81
Black Crappie	Pomoxis nigromaculatus		1	1	1.5	0.13	30.0	0.05	0.14
Warmouth Sunfish	Lepomis gulosus		1	1	1.5	0.13	60.0	0.09	0.29
Bluegill X Pumpkinseed Sunfi	HYBRID		1	1	1.5	0.13	20.0	0.03	0.10
Walleye	Sander vitreus		1	1	1.5	0.13	45.00	0.07	0.22

	Apper	ndix Tab			dwest becies		ersity	Institu	ute		
Site ID	0: 13-6 River: 9	95-656 D	esPlaines	•			RM	: 109.30	Date:	06/24/20)22
Time I	Fished: 1269	Distance:	0.320	Dr	ainge (so	ı mi):	123.6	Dep	oth:	0	
Locati	on: Dst. Russell Rd.						Lat: 42	.48905	Long:	-87.9252	23
Species Code:	Species Name:	Feed Guild		Breed Guild	IBI Group	No. Fish	Rel. No.	% by No.	Rel. Wt.	% by Wt.	Av. Wt.
15-001	Bowfin	Р		С		7	21.9	1.87	19375	22.47	885.7
40-016	White Sucker	0	Т	S	W	9	28.1	2.40	2125	2.46	75.5
40-018	Spotted Sucker	I		S	R	2	6.3	0.53	1406	1.63	225.0
43-001	Common Carp	0	Т	М	G	22	68.8	5.87	48703	56.49	708.4
43-003	Golden Shiner	I	Т	М	Ν	5	15.6	1.33	250	0.29	16.0
43-004	Hornyhead Chub	I	I	Ν	Ν	3	9.4	0.80	125	0.14	13.3
43-028	Spottail Shiner	I	Р	М	Ν	16	50.0	4.27	218	0.25	4.3
43-032	Spotfin Shiner	I		М	Ν	69	215.6	18.40	625	0.72	2.8
43-034	Sand Shiner	I	Μ	М	Ν	3	9.4	0.80	31	0.04	3.3
43-043	Bluntnose Minnow	0	Т	С	Ν	106	331.3	28.27	1218	1.41	3.6
47-002	Channel Catfish			С	F	2	6.3	0.53	6250	7.25	1000.0
47-004	Yellow Bullhead	I	Т	С		1	3.1	0.27	968	1.12	310.0
54-002	Blackstripe Topminnow	I		М		8	25.0	2.13	31	0.04	1.2
74-006	Yellow Bass	Р	Р	М		5	15.6	1.33	406	0.47	26.0
77-002	Black Crappie	I		С	S	2	6.3	0.53	156	0.18	25.0
77-006	Largemouth Bass	С		С	F	5	15.6	1.33	1409	1.63	90.2
77-007	Warmouth Sunfish	С		С	S	1	3.1	0.27	31	0.04	10.0
77-008	Green Sunfish	I	Т	С	S	4	12.5	1.07	25	0.03	2.0
77-009	Bluegill Sunfish	I	Р	С	S	32	100.0	8.53	1125	1.30	11.2
77-010	Orangespotted Sunfish	I		С	S	21	65.6	5.60	312	0.36	4.7
77-013	Pumpkinseed Sunfish	I	Р	С	S	50	156.3	13.33	1406	1.63	9.0
80-005	Blackside Darter	I		S	D	1	3.1	0.27	9	0.01	3.0
80-014	Johnny Darter	I		С	D	1	3.1	0.27	3	0.00	1.0
No Spec IBI:	ies: 23 Nat. Spec 32.0 Miwb:	e ies: 22 8.3	Hybrids:	0		Total Co	ounted:	375 T	otal Rel. V	Vt. :	86212

Mlwb:

02/08/2024

	Appen	dix Tab			dwest becies		ersity	ı İnstitı	ute		
Site II	D: 13-6 River: 95	-656 D	esPlaines	-			RN	٨: 109.30	Date:	09/28/20)22
Time	Fished: 1117 D	vistance:	0.320	Dra	ainge (sq	mi):	123.6	6 Dep	oth:	0	
Locati	ion: Dst. Russell Rd.					L	at: 4	2.48905	Long:	-87.9252	23
Species Code:	Species Name:	Feed Guild	Toler- ance	Breed Guild	IBI Group	No. Fish	Rel. No.	% by No.	Rel. Wt.	% by Wt.	Av. Wt.
15-001	Bowfin	Р		С	·	6	18.8	3.21	23125	39.23	1233.3
34-001	Central Mudminnow	I	т	С		2	6.3	1.07	31	0.05	5.0
37-003	Northern Pike	Р		М	F	3	9.4	1.60	3906	6.63	416.6
40-016	White Sucker	0	Т	S	W	2	6.3	1.07	1328	2.25	212.5
40-018	Spotted Sucker	I		S	R	2	6.3	1.07	4062	6.89	650.0
43-001	Common Carp	0	т	М	G	6	18.8	3.21	20781	35.25	1108.3
43-003	Golden Shiner	I	Т	М	Ν	2	6.3	1.07	31	0.05	5.0
43-028	Spottail Shiner	I	Р	М	Ν	1	3.1	0.53	21	0.04	7.0
43-032	Spotfin Shiner	I		М	Ν	11	34.4	5.88	31	0.05	0.9
43-034	Sand Shiner	I	М	М	Ν	1	3.1	0.53	3	0.01	1.0
43-043	Bluntnose Minnow	0	т	С	Ν	28	87.5	14.97	171	0.29	1.9
54-002	Blackstripe Topminnow	I		М		6	18.8	3.21	15	0.03	0.8
68-001	Pirate Perch	I		С		1	3.1	0.53	15	0.03	5.0
70-001	Brook Silverside	I	М	М		10	31.3	5.35	46	0.08	1.5
77-006	Largemouth Bass	С		С	F	17	53.1	9.09	1859	3.15	35.0
77-007	Warmouth Sunfish	С		С	S	1	3.1	0.53	156	0.27	50.0
77-009	Bluegill Sunfish	I	Р	С	S	60	187.5	32.09	2250	3.82	12.0
77-010	Orangespotted Sunfish	I		С	S	11	34.4	5.88	218	0.37	6.3
77-013	Pumpkinseed Sunfish	I	Р	С	S	15	46.9	8.02	875	1.48	18.6
80-005	Blackside Darter	I		S	D	1	3.1	0.53	15	0.03	5.0
80-014	Johnny Darter	I		С	D	1	3.1	0.53	3	0.01	1.0
No Spec	cies: 21 Nat. Specie	es : 20	Hybrids	: 0		Total Co	unted:	187 T	otal Rel. V	Vt. :	58950

IBI: 38.0

Mlwb: 8.6

	- PP				pecies	Biodive List	.i Sicy	Insere			
Site ID	D: 13-5 River: 95	-656 De	esPlaine	s River			RM:	106.60	Date:	06/24/20)22
Time I	Fished: 1594 D	stance:	0.500	Dr	ainge (sq	mi):	137.2	Dep	oth:	0	
Locati	on: dst. IL-173					L	at: 42	.46472	Long:	-87.9428	89
Species Code:	Species Name:	Feed Guild	Toler- ance	Breed Guild	IBI Group	No. Fish	Rel. No.	% by No.	Rel. Wt.	% by Wt.	Av. Wt.
15-001	Bowfin	Р		С		6	12.0	3.17	11800	23.58	983.3
37-003	Northern Pike	Р		М	F	1	2.0	0.53	2000	4.00	1000.0
40-018	Spotted Sucker	I		S	R	5	10.0	2.65	2440	4.88	244.0
43-001	Common Carp	0	Т	М	G	15	30.0	7.94	29800	59.56	993.3
43-003	Golden Shiner	I	Т	М	Ν	9	18.0	4.76	240	0.48	13.3
43-028	Spottail Shiner	I	Р	М	Ν	2	4.0	1.06	40	0.08	10.0
43-032	Spotfin Shiner	I		М	Ν	19	38.0	10.05	160	0.32	4.2
43-034	Sand Shiner	I	М	Μ	Ν	1	2.0	0.53	4	0.01	2.0
43-043	Bluntnose Minnow	0	Т	С	Ν	9	18.0	4.76	60	0.12	3.3
54-002	Blackstripe Topminnow	I		М		3	6.0	1.59	20	0.04	3.3
74-006	Yellow Bass	Р	Р	М		4	8.0	2.12	180	0.36	22.5
77-002	Black Crappie	I		С	S	2	4.0	1.06	440	0.88	110.0
77-006	Largemouth Bass	С		С	F	2	4.0	1.06	802	1.60	200.5
77-007	Warmouth Sunfish	С		С	S	1	2.0	0.53	10	0.02	5.0
77-008	Green Sunfish	I	Т	С	S	8	16.0	4.23	220	0.44	13.7
77-009	Bluegill Sunfish	I	Р	С	S	41	82.0	21.69	1060	2.12	12.9
77-010	Orangespotted Sunfish	I		С	S	13	26.0	6.88	80	0.16	3.0
77-013	Pumpkinseed Sunfish	I	Р	С	S	48	96.0	25.40	680	1.36	7.0

IBI: 36.0

Mlwb: 7.4

			F1	sn Sp	<u>pecies</u>	List					
Site ID	0: 13-5 River: 95-	656 D	esPlaine	s River	-		RM:	106.60	Date:	09/28/20)22
Time I	Fished: 2015 Dis	stance:	0.500	Dr	ainge (sq	mi):	137.2	Dep	oth:	0	
Locati	on: dst. IL-173					L	at: 42	.46472	Long:	-87.9428	39
Species Code:	Species Name:	Feed Guild	Toler- ance	Breed Guild	IBI Group	No. Fish	Rel. No.	% by No.	Rel. Wt.	% by Wt.	Av. Wt.
15-001	Bowfin	Р		С		2	4.0	0.80	6100	12.86	1525.0
20-003	Gizzard Shad	0		М		30	60.0	12.05	1860	3.92	31.0
34-001	Central Mudminnow	I	Т	С		2	4.0	0.80	10	0.02	2.5
37-003	Northern Pike	Р		М	F	1	2.0	0.40	1800	3.79	900.0
40-018	Spotted Sucker	I		S	R	3	6.0	1.20	440	0.93	73.3
43-001	Common Carp	0	Т	М	G	14	28.0	5.62	31000	65.33	1107.1
43-003	Golden Shiner	I	Т	М	Ν	10	20.0	4.02	320	0.67	16.0
43-028	Spottail Shiner	I	Р	М	Ν	3	6.0	1.20	50	0.11	8.3
43-032	Spotfin Shiner	I		М	Ν	5	10.0	2.01	20	0.04	2.0
43-043	Bluntnose Minnow	0	Т	С	Ν	4	8.0	1.61	10	0.02	1.2
54-002	Blackstripe Topminnow	I		М		22	44.0	8.84	50	0.11	1.1
70-001	Brook Silverside	I	М	М		1	2.0	0.40	2	0.00	1.0
74-006	Yellow Bass	Р	Р	М		7	14.0	2.81	1080	2.28	77.1
77-002	Black Crappie	I		С	S	1	2.0	0.40	70	0.15	35.0
77-006	Largemouth Bass	С		С	F	8	16.0	3.21	2630	5.54	164.3
77-009	Bluegill Sunfish	I	Р	С	S	85	170.0	34.14	1220	2.57	7.1
77-010	Orangespotted Sunfish	I		С	S	26	52.0	10.44	140	0.30	2.6
77-013	Pumpkinseed Sunfish	I	Р	С	S	25	50.0	10.04	650	1.37	13.0

IBI: 38.0

Mlwb: 7.4

Appendix Table A-4. Midwest Biodiversity Institute Fish Species List

Site ID:	13-4	River	: 95-656	DesPlaines F	River		RM: 102.90) Da	ate: 06/24/2022
Time Fish	ed:	2878	Distance:	0.500	Drainge (sq mi):	14	5.5 De	pth:	0
Location:	dst. V	Vadswort	h Rd.			Lat:	42.42844	Long	: -87.92982

Species Code:	Species Name:	Feed Guild		Breed Guild	IBI Group	No. Fish	Rel. No.	% by No.	Rel. Wt.	% by Wt.	Av. Wt.
15-001	Bowfin	Р		С		5	10.0	2.67	10000	15.82	1000.0
20-003	Gizzard Shad	0		М		3	6.0	1.60	2020	3.20	336.6
37-003	Northern Pike	Р		М	F	2	4.0	1.07	5000	7.91	1250.0
40-016	White Sucker	0	Т	s	W	4	8.0	2.14	2540	4.02	317.5
40-018	Spotted Sucker	I		S	R	5	10.0	2.67	2230	3.53	223.0
43-001	Common Carp	0	Т	М	G	20	40.0	10.70	20600	32.59	515.0
43-003	Golden Shiner	I	Т	М	Ν	2	4.0	1.07	90	0.14	22.5
43-032	Spotfin Shiner	I		М	Ν	1	2.0	0.53	4	0.01	2.0
43-043	Bluntnose Minnow	0	Т	С	Ν	3	6.0	1.60	20	0.03	3.3
47-002	Channel Catfish			С	F	4	8.0	2.14	9800	15.50	1225.0
47-004	Yellow Bullhead	I	Т	С		1	2.0	0.53	580	0.92	290.0
54-002	Blackstripe Topminnow	I		М		5	10.0	2.67	20	0.03	2.0
74-006	Yellow Bass	Р	Р	М		2	4.0	1.07	80	0.13	20.0
77-001	White Crappie	I		С	S	1	2.0	0.53	290	0.46	145.0
77-002	Black Crappie	I		С	S	3	6.0	1.60	740	1.17	123.3
77-006	Largemouth Bass	С		С	F	11	22.0	5.88	5600	8.86	254.5
77-007	Warmouth Sunfish	С		С	S	4	8.0	2.14	50	0.08	6.2
77-008	Green Sunfish	I	Т	С	S	1	2.0	0.53	30	0.05	15.0
77-009	Bluegill Sunfish	I	Р	С	S	46	92.0	24.60	2380	3.76	25.8
77-010	Orangespotted Sunfish	I		С	S	12	24.0	6.42	140	0.22	5.8
77-013	Pumpkinseed Sunfish	I	Р	С	S	52	104.0	27.81	1000	1.58	9.6
No Spec IBI:	cies: 21 Nat. Species: 36.0 Miwb: 8	20 .4	Hybrids:	0		Total Co	unted:	187 T o	otal Rel. W	/t. :	63214

Appendix Table A-4. Midwest Biodiversity Institute Fish Species List

Site ID:	13-4	River	: 95-656	DesPlaines F	River		RM: 102.90) Da	te: 09/28/2022
Time Fish	ed:	2675	Distance:	0.500	Drainge (sq mi):	14	5.5 De	pth:	0
Location:	dst. V	Vadswort	h Rd.			Lat:	42.42844	Long:	-87.92982

Species Code:	Species Name:	Feed Guild	Toler- ance	Breed Guild	IBI Group	No. Fish	Rel. No.	% by No.	Rel. Wt.	% by Wt.	Av. Wt.
15-001	Bowfin	P	ance	C	Group	1	2.0	0.45	3800	8.05	1900.0
20-003	Gizzard Shad	0		М		33	66.0	14.73	900	1.91	13.6
37-003	Northern Pike	Р		М	F	2	4.0	0.89	5200	11.02	1300.0
40-016	White Sucker	0	т	S	W	7	14.0	3.13	5580	11.83	398.5
40-018	Spotted Sucker	I		S	R	10	20.0	4.46	7000	14.84	350.0
43-001	Common Carp	0	т	М	G	4	8.0	1.79	16500	34.97	2062.5
43-002	Goldfish	0	т	М	G	3	6.0	1.34	560	1.19	93.3
43-003	Golden Shiner	I	т	М	Ν	2	4.0	0.89	40	0.08	10.0
43-043	Bluntnose Minnow	0	т	С	Ν	3	6.0	1.34	10	0.02	1.6
54-002	Blackstripe Topminnow	I		М		4	8.0	1.79	4	0.01	0.5
70-001	Brook Silverside	I	М	М		1	2.0	0.45	2	0.00	1.0
74-006	Yellow Bass	Р	Р	М		6	12.0	2.68	350	0.74	29.1
77-002	Black Crappie	I		С	S	10	20.0	4.46	1100	2.33	55.0
77-006	Largemouth Bass	С		С	F	8	16.0	3.57	3600	7.63	225.0
77-007	Warmouth Sunfish	С		С	S	1	2.0	0.45	6	0.01	3.0
77-008	Green Sunfish	I	т	С	S	1	2.0	0.45	40	0.08	20.0
77-009	Bluegill Sunfish	I	Р	С	S	70	140.0	31.25	1280	2.71	9.1
77-010	Orangespotted Sunfish	I		С	S	7	14.0	3.13	30	0.06	2.1
77-013	Pumpkinseed Sunfish	I	Р	С	S	49	98.0	21.88	1120	2.37	11.4
77-025	Warmouth X Pumpkinseed S	unfish				1	2.0	0.45	20	0.04	10.0
80-003	Yellow Perch			М		1	2.0	0.45	40	0.08	20.0
No Spec	-		Hybrid	s: 1		Total Co	unted:	224 T o	otal Rel. W	/t. :	47182
IBI:	36.0 Miwb: 8	3.8									

	Appendiz			sh Sp	<u>pecies</u>					06/26/20	
Site ID		00 D		River			RM:)ZZ
Time F	Fished: 2435 Dist	ance:	0.500	Dr	ainge (sq	mi):	213.1	Dep	oth:	0	
Locati	on: dst. WR1 Riffle					I	_at: 42	.39616	Long:	-87.923	59
Species Code:	Species Name:	Feed Guild	Toler- ance	Breed Guild	IBI Group	No. Fish	Rel. No.	% by No.	Rel. Wt.	% by Wt.	Av. Wt.
15-001	Bowfin	Р		С		4	8.0	1.07	14600	17.00	1825.0
37-003	Northern Pike	Р		М	F	2	4.0	0.53	3400	3.96	850.0
40-016	White Sucker	0	Т	S	W	46	92.0	12.27	11500	13.39	125.0
40-018	Spotted Sucker	I		S	R	3	6.0	0.80	3200	3.73	533.3
43-001	Common Carp	0	Т	М	G	2	4.0	0.53	10000	11.64	2500.0
43-003	Golden Shiner	I	Т	М	Ν	2	4.0	0.53	70	0.08	17.5
43-004	Hornyhead Chub	I	I	Ν	Ν	72	144.0	19.20	2300	2.68	15.9
43-028	Spottail Shiner	I	Р	М	Ν	4	8.0	1.07	60	0.07	7.5
43-032	Spotfin Shiner	I		М	Ν	22	44.0	5.87	200	0.23	4.5
43-043	Bluntnose Minnow	0	Т	С	Ν	39	78.0	10.40	340	0.40	4.3
43-045	Common Carp X Goldfish	0	Т		G	3	6.0	0.80	12200	14.20	2033.3
47-002	Channel Catfish			С	F	8	16.0	2.13	14640	17.04	915.0
47-004	Yellow Bullhead	I	Т	С		1	2.0	0.27	180	0.21	90.0
54-002	Blackstripe Topminnow	I		М		2	4.0	0.53	4	0.00	1.0
74-006	Yellow Bass	Р	Р	М		20	40.0	5.33	920	1.07	23.0
77-001	White Crappie	I		С	S	1	2.0	0.27	10	0.01	5.0
77-002	Black Crappie	I		С	S	3	6.0	0.80	220	0.26	36.6
77-004	Smallmouth Bass	С	М	С	F	3	6.0	0.80	200	0.23	33.3
77-006	Largemouth Bass	С		С	F	11	22.0	2.93	4880	5.68	221.8
77-007	Warmouth Sunfish	С		С	S	4	8.0	1.07	120	0.14	15.0
77-008	Green Sunfish	I	Т	С	S	1	2.0	0.27	40	0.05	20.0
77-009	Bluegill Sunfish	I	Р	С	S	68	136.0	18.13	3560	4.14	26.1
77-013	Pumpkinseed Sunfish	I	Р	С	S	39	78.0	10.40	1300	1.51	16.6
77-015	Green X Bluegill Sunfish					1	2.0	0.27	140	0.16	70.0
80-001	Sauger	Р		S	F	4	8.0	1.07	1700	1.98	212.5
80-005	Blackside Darter	I		S	D	6	12.0	1.60	60	0.07	5.0
80-011	Logperch	I	М	S	D	4	8.0	1.07	60	0.07	7.5
No Spec	-	24 .7	Hybrids	: 2		Total Co	ounted:	375 T	otal Rel. V	Vt. :	85904

Appendix Table A-4. Midwest Biodiversity Institute Fish Species List												
Site ID	0: 13-19 River: 95-	-656 D	esPlaines			31	RM:	99.30	Date:	10/01/20)22	
Time F	Fished: 2065 Di	istance:	0.500	Dr	ainge (sq m	i):	213.1	Dep	oth:	0		
Locati	on: dst. WR1 Riffle					L	_at: 42	.39616	Long:	-87.9235	59	
Species Code:	Species Name:	Feed Guild		Breed Guild	IBI Group	No. Fish	Rel. No.	% by No.	Rel. Wt.	% by Wt.	Av. Wt.	
15-001	Bowfin	Р		С		6	12.0	0.87	17700	17.05	1475.0	
20-003	Gizzard Shad	0		М		10	20.0	1.46	900	0.87	45.0	
37-003	Northern Pike	Р		М	F	2	4.0	0.29	3800	3.66	950.0	
40-016	White Sucker	0	Т	S	W	60	120.0	8.75	22580	21.75	188.1	
40-018	Spotted Sucker	I		S	R	7	14.0	1.02	4360	4.20	311.4	
43-001	Common Carp	0	Т	М	G	12	24.0	1.75	23540	22.67	980.8	
43-004	Hornyhead Chub	I	I	Ν	Ν	122	244.0	17.78	5300	5.11	21.7	
43-026	Common Shiner	I		s	Ν	1	2.0	0.15	20	0.02	10.0	
43-032	Spotfin Shiner	I		М	Ν	33	66.0	4.81	100	0.10	1.5	
43-043	Bluntnose Minnow	0	Т	С	Ν	208	416.0	30.32	1640	1.58	3.9	
47-002	Channel Catfish			С	F	9	18.0	1.31	8050	7.75	447.2	
47-004	Yellow Bullhead	I	Т	С		6	12.0	0.87	520	0.50	43.3	
54-002	Blackstripe Topminnow	I		М		26	52.0	3.79	40	0.04	0.7	
70-001	Brook Silverside	I	М	М		3	6.0	0.44	6	0.01	1.0	
74-006	Yellow Bass	Р	Р	М		28	56.0	4.08	4300	4.14	76.7	
77-002	Black Crappie	I		С	S	9	18.0	1.31	1070	1.03	59.4	
77-004	Smallmouth Bass	С	М	С	F	1	2.0	0.15	120	0.12	60.0	
77-006	Largemouth Bass	С		С	F	17	34.0	2.48	3040	2.93	89.4	
77-007	Warmouth Sunfish	С		С	S	8	16.0	1.17	760	0.73	47.5	
77-008	Green Sunfish	I	Т	С	S	5	10.0	0.73	110	0.11	11.0	
77-009	Bluegill Sunfish	I	Р	С	S	79	158.0	11.52	3370	3.25	21.3	
77-010	Orangespotted Sunfish	I		С	S	1	2.0	0.15	20	0.02	10.0	
77-013	Pumpkinseed Sunfish	I	Р	С	S	27	54.0	3.94	1300	1.25	24.0	
77-016	Green X Pumpkinseed Sur	nfish				1	2.0	0.15	40	0.04	20.0	
80-001	Sauger	Р		S	F	1	2.0	0.15	900	0.87	450.0	
80-003	Yellow Perch			М		1	2.0	0.15	160	0.15	80.0	
80-005	Blackside Darter	I		S	D	1	2.0	0.15	10	0.01	5.0	
80-011	Logperch	I	М	S	D	2	4.0	0.29	60	0.06	15.0	
No Spec	No Species: 27 Nat. Species: 26 Hybrids: 1 Total Counted: 686 Total Rel. Wt. : 103816											
-	32.0 Miwb:	9.8	,		-						-	

Appendix Table A-4. Midwest Biodiversity Institute Fish Species List											
Site ID	D: 13-18 River: 95-6	56 D	esPlaines	River			RM:	99.72	Date: (06/24/20	122
Time F	Fished: 2769 Dist	ance:	0.500	Dr	ainge (sq mi):	212.8	Dep	th:	0	
Locati	on: ust. WR1 Riffle					La	at: 42.4	40100	Long:	-87.9282	.2
Species Code:	Species Name:	Feed Guild		Breed Guild	IBI Group	No. Fish	Rel. No.	% by No.	Rel. Wt.	% by Wt.	Av. Wt.
15-001	Bowfin	Р		С	•	5	10.0	3.97	10200	15.20	1020.0
20-003	Gizzard Shad	0		М		3	6.0	2.38	3460	5.16	576.6
40-018	Spotted Sucker	I		S	R	8	16.0	6.35	7000	10.43	437.5
43-001	Common Carp	0	Т	М	G	22	44.0	17.46	21200	31.60	481.8
43-032	Spotfin Shiner	I		Μ	N	1	2.0	0.79	4	0.01	2.0
47-002	Channel Catfish			С	F	4	8.0	3.17	10200	15.20	1275.0
54-002	Blackstriped Topminnow	I		Μ		1	2.0	0.79	2	0.00	1.0
74-006	Yellow Bass	Р	Р	Μ		5	10.0	3.97	220	0.33	22.0
77-002	Black Crappie	I		С	S	4	8.0	3.17	1240	1.85	155.0
77-006	Largemouth Bass	С		С	F	10	20.0	7.94	8840	13.18	442.0
77-007	Warmouth Sunfish	С		С	S	1	2.0	0.79	100	0.15	50.0
77-008	Green Sunfish	I	Т	С	S	1	2.0	0.79	10	0.01	5.0
77-009	Bluegill Sunfish	I	Р	С	S	53	106.0	42.06	4400	6.56	41.5
77-013	Pumpkinseed Sunfish	1	Р	С	S	8	16.0	6.35	220	0.33	13.7
No Spec	•	13 7.9	Hybrids:	0	T	otal Cou	unted:	126 T	otal Rel. W	/t. :	67096

Site ID	0: 13-18 River:	95-656 De	esPlaines	s River			RM:	99.72	Date:	09/28/20)22
Time I	Fished: 2077	Distance:	0.500	Dr	ainge (sq r	ni):	212.8	Dep	oth:	0	
Locati	on: ust. WR1 Riffle					L	at: 42	.40100	Long:	-87.9282	22
Species Code:	Species Name:	Feed Guild	Toler- ance	Breed Guild	IBI Group	No. Fish	Rel. No.	% by No.	Rel. Wt.	% by Wt.	Av. Wt.
15-001	Bowfin	Р		С		9	18.0	4.41	25000	29.77	1388.8
20-003	Gizzard Shad	0		М		50	100.0	24.51	3620	4.31	36.2
37-003	Northern Pike	Р		М	F	1	2.0	0.49	2200	2.62	1100.0
40-018	Spotted Sucker	I		S	R	7	14.0	3.43	6100	7.26	435.7
43-001	Common Carp	0	Т	М	G	21	42.0	10.29	26600	31.68	633.3
43-003	Golden Shiner	I	Т	М	Ν	2	4.0	0.98	10	0.01	2.5
43-043	Bluntnose Minnow	0	Т	С	Ν	2	4.0	0.98	4	0.00	1.0
47-002	Channel Catfish			С	F	2	4.0	0.98	4800	5.72	1200.0
70-001	Brook Silverside	I	Μ	М		1	2.0	0.49	2	0.00	1.0
74-006	Yellow Bass	Р	Р	М		1	2.0	0.49	150	0.18	75.0
77-002	Black Crappie	I		С	S	3	6.0	1.47	650	0.77	108.3
77-006	Largemouth Bass	С		С	F	12	24.0	5.88	6120	7.29	255.0
77-009	Bluegill Sunfish	I	Р	С	S	83	166.0	40.69	4700	5.60	28.3
77-013	Pumpkinseed Sunfish	I	Р	С	S	8	16.0	3.92	310	0.37	19.3
80-002	Walleye	Р		S	F	1	2.0	0.49	3700	4.41	1850.0
80-005	Blackside Darter	I		S	D	1	2.0	0.49	10	0.01	5.0

32.0

MIwb:

8.1

Appendix Table A-4. Midwest Biodiversity Institute Fish Species List												
Site ID	D: 13-3 River: 95	5-656 D	esPlaines	•			RM:	98.70	Date:	06/25/20)22	
Time I	Fished: 2210 D	istance:	0.500	Dr	ainge (so	q mi):	220.2	Dep	oth:	0		
Locati	ion: ust. US-41					L	.at: 42	.38323	Long:	-87.9146	66	
Species Code:	Species Name:	Feed Guild	Toler- ance	Breed Guild	IBI Group	No. Fish	Rel. No.	% by No.	Rel. Wt.	% by Wt.	Av. Wt.	
15-001	Bowfin	Р		С		2	4.0	0.59	5200	7.02	1300.0	
37-003	Northern Pike	Р		Μ	F	1	2.0	0.29	3000	4.05	1500.0	
40-016	White Sucker	0	Т	S	W	47	94.0	13.82	7800	10.53	82.9	
40-018	Spotted Sucker	I		S	R	3	6.0	0.88	2400	3.24	400.0	
43-001	Common Carp	0	Т	Μ	G	27	54.0	7.94	28600	38.61	529.6	
43-004	Hornyhead Chub	I	I	Ν	Ν	45	90.0	13.24	1180	1.59	13.1	
43-032	Spotfin Shiner	I		М	Ν	59	118.0	17.35	580	0.78	4.9	
43-043	Bluntnose Minnow	0	Т	С	Ν	49	98.0	14.41	520	0.70	5.3	
47-002	Channel Catfish			С	F	5	10.0	1.47	16400	22.14	1640.0	
47-004	Yellow Bullhead	I	Т	С		1	2.0	0.29	580	0.78	290.0	
54-002	Blackstripe Topminnow	I		М		1	2.0	0.29	2	0.00	1.0	
68-001	Pirate Perch	I		С		1	2.0	0.29	16	0.02	8.0	
74-006	Yellow Bass	Р	Р	М		7	14.0	2.06	300	0.40	21.4	
77-003	Rock Bass	С		С	S	1	2.0	0.29	240	0.32	120.0	
77-004	Smallmouth Bass	С	М	С	F	8	16.0	2.35	600	0.81	37.5	
77-006	Largemouth Bass	С		С	F	10	20.0	2.94	2580	3.48	129.0	
77-008	Green Sunfish	I	Т	С	S	3	6.0	0.88	180	0.24	30.0	
77-009	Bluegill Sunfish	I	Р	С	S	44	88.0	12.94	2940	3.97	33.4	
77-013	Pumpkinseed Sunfish	I	Р	С	S	20	40.0	5.88	700	0.94	17.5	
77-015	Green X Bluegill Sunfish					1	2.0	0.29	200	0.27	100.0	
80-005	Blackside Darter	I		S	D	5	10.0	1.47	60	0.08	6.0	
No Spec IBI:	zies: 20 Nat. Specie 28.0 Mlwb:	es: 19 8.2	Hybrids	: 1		Total Co	unted:	340 T	otal Rel. V	Vt. :	74078	

Appendix Table A-4. Midwest Biodiversity Institute Fish Species List												
				•		LISU						
Site ID	D: 13-3 River: 9	95-656 D	esPlaines	s River	-		RM:	98.70	Date:	10/01/20)22	
Time F	Fished: 2303	Distance:	0.500	Dr	ainge (so	mi):	220.2	Dep	oth:	0		
Locati	ion: ust. US-41					L	at: 42	.38323	Long:	-87.914	56	
Species												
Code:	Species Name:	Feed Guild	Toler- ance	Breed Guild	IBI Group	No. Fish	Rel. No.	% by	Rel. Wt.	% by Wt.	Av.	
15-001	Bowfin	P	ance	C	Group	1	2.0	No. 0.23	4700	9.02	<u>Wt</u> . 2350.0	
20-003	Gizzard Shad	0		M		1	2.0	0.23	60	0.12	30.0	
37-003	Northern Pike	P		Μ	F	6	12.0	1.37	8280	15.88	690.0	
40-016	White Sucker	0	т	S	W	38	76.0	8.66	18320	35.15	241.0	
40-018	Spotted Sucker	I		S	R	15	30.0	3.42	1630	3.13	54.3	
43-001	Common Carp	0	Т	М	G	4	8.0	0.91	400	0.77	50.0	
43-003	Golden Shiner	I	Т	М	Ν	1	2.0	0.23	90	0.17	45.0	
43-004	Hornyhead Chub	I	I	Ν	Ν	25	50.0	5.69	840	1.61	16.8	
43-028	Spottail Shiner	I	Р	М	Ν	3	6.0	0.68	20	0.04	3.3	
43-032	Spotfin Shiner	I		М	Ν	89	178.0	20.27	220	0.42	1.2	
43-034	Sand Shiner	I	М	М	Ν	3	6.0	0.68	10	0.02	1.6	
43-043	Bluntnose Minnow	0	Т	С	Ν	77	154.0	17.54	420	0.81	2.7	
47-002	Channel Catfish			С	F	2	4.0	0.46	410	0.79	102.5	
47-004	Yellow Bullhead	I	Т	С		8	16.0	1.82	2880	5.53	180.0	
54-002	Blackstripe Topminnow	I		М		8	16.0	1.82	10	0.02	0.6	
70-001	Brook Silverside	I	М	Μ		1	2.0	0.23	2	0.00	1.0	
74-006	Yellow Bass	Р	Р	М		1	2.0	0.23	90	0.17	45.0	
77-002	Black Crappie	I		С	S	13	26.0	2.96	2840	5.45	109.2	
77-004	Smallmouth Bass	С	М	С	F	7	14.0	1.59	1260	2.42	90.0	
77-006	Largemouth Bass	С		С	F	27	54.0	6.15	5610	10.76	103.8	
77-008	Green Sunfish	I	Т	С	S	5	10.0	1.14	160	0.31	16.0	
77-009	Bluegill Sunfish	I	Р	С	S	88	176.0	20.05	3340	6.41	18.9	
77-013	Pumpkinseed Sunfish	I	Р	С	S	10	20.0	2.28	490	0.94	24.5	
80-005	Blackside Darter	I		S	D	4	8.0	0.91	40	0.08	5.0	
80-014	Johnny Darter	I		С	D	2	4.0	0.46	4	0.01	1.0	
No Spec	cies: 25 Nat. Spec	cies: 24	Hybrids	: 0		Total Co	unted:	439 1	otal Rel. V	Vt. :	52126	

36.0

Mlwb: 9.5

Site II	D: 13-2 River: 95-6	656 D	esPlaines	s River			RM:	96.82	Date:	06/23/20)22
Time	Fished: 2463 Dis	tance:	0.430	Dr	ainge (sq	mi):	225.3	Dep	oth:	0	
Locati	ion: dst. McClare Ave.					L	.at: 42	.36967	Long:	-87.918	34
Species Code:	Species Name:	Feed Guild	Toler- ance	Breed Guild	IBI Group	No. Fish	Rel. No.	% by No.	Rel. Wt.	% by Wt.	Av. Wt.
40-016	White Sucker	0	Т	S	W	39	90.7	19.60	10118	13.51	111.5
40-018	Spotted Sucker	I		S	R	4	9.3	2.01	7675	10.25	825.0
43-001	Common Carp	0	Т	М	G	11	25.6	5.53	45822	61.17	1790.9
43-004	Hornyhead Chub	I.	Ι	Ν	Ν	50	116.3	25.13	1860	2.48	16.0
43-022	Rosyface Shiner	I	I	S	Ν	11	25.6	5.53	93	0.12	3.6
43-026	Common Shiner	I.		S	Ν	3	7.0	1.51	197	0.26	28.3
43-028	Spottail Shiner	I	Р	М	Ν	3	7.0	1.51	81	0.11	11.6
43-032	Spotfin Shiner	I.		М	Ν	13	30.2	6.53	186	0.25	6.1
43-034	Sand Shiner	I	М	М	Ν	1	2.3	0.50	4	0.01	2.0
43-043	Bluntnose Minnow	0	Т	С	Ν	14	32.6	7.04	127	0.17	3.9
47-002	Channel Catfish			С	F	1	2.3	0.50	4652	6.21	2000.0
47-004	Yellow Bullhead	I	Т	С		1	2.3	0.50	279	0.37	120.0
47-008	Stonecat Madtom	I	Ι	С		1	2.3	0.50	104	0.14	45.0
77-002	Black Crappie	I		С	S	1	2.3	0.50	186	0.25	80.0
77-003	Rock Bass	С		С	S	3	7.0	1.51	721	0.96	103.3
77-004	Smallmouth Bass	С	М	С	F	2	4.7	1.01	255	0.34	55.0
77-006	Largemouth Bass	С		С	F	3	7.0	1.51	1046	1.40	150.0
77-008	Green Sunfish	I	Т	С	S	8	18.6	4.02	209	0.28	11.2
77-009	Bluegill Sunfish	I	Р	С	S	17	39.5	8.54	511	0.68	12.9
77-010	Orangespotted Sunfish	I		С	S	2	4.7	1.01	23	0.03	5.0
77-013	Pumpkinseed Sunfish	I	Р	С	S	1	2.3	0.50	18	0.02	8.0
80-001	Sauger	Р		S	F	1	2.3	0.50	465	0.62	200.0
80-005	Blackside Darter	I		S	D	5	11.6	2.51	93	0.12	8.0
80-011	Logperch	I	М	S	D	4	9.3	2.01	174	0.23	18.7

MIwb:

7.8

02/08/2024

	Appendix Table A-4. Midwest Biodiversity Institute Fish Species List												
Site ID	D: 13-2 River: 9	95-656 D	esPlaine	•			RM:	96.82	Date:	10/01/20)22		
Time I	Fished: 2571	Distance:	0.500) Dr	ainge (so	ղ mi)։	225.3	Dep	oth:	0			
Locati	on: dst. McClare Ave	2.				l	_at: 42	.36967	Long:	-87.9183	34		
Species Code:	Species Name:	Feed Guild	Toler- ance	Breed Guild	IBI Group	No. Fish	Rel. No.	% by No.	Rel. Wt.	% by Wt.	Av. Wt.		
37-003	Northern Pike	P	unoo	M	F	8	16.0	1.47	12100	17.96	756.2		
40-016	White Sucker	0	т	S	Ŵ	49	98.0	8.99	26320	39.07	268.5		
40-018	Spotted Sucker	- -		S	R	7	14.0	1.28	2980	4.42	212.8		
43-001	Common Carp	0	т	М	G	1	2.0	0.18	7800	11.58	3900.0		
43-004	Hornyhead Chub	I	I	Ν	Ν	97	194.0	17.80	3420	5.08	17.6		
43-022	Rosyface Shiner	I	I	S	Ν	16	32.0	2.94	50	0.07	1.5		
43-026	Common Shiner	I		S	Ν	8	16.0	1.47	160	0.24	10.0		
43-032	Spotfin Shiner	I		М	Ν	131	262.0	24.04	520	0.77	1.9		
43-034	Sand Shiner	I	М	М	Ν	18	36.0	3.30	60	0.09	1.6		
43-043	Bluntnose Minnow	0	Т	С	Ν	109	218.0	20.00	760	1.13	3.4		
43-044	Central Stoneroller	Н		Ν	Ν	1	2.0	0.18	4	0.01	2.0		
47-002	Channel Catfish			С	F	1	2.0	0.18	3900	5.79	1950.0		
47-004	Yellow Bullhead	I	т	С		9	18.0	1.65	3070	4.56	170.5		
47-008	Stonecat Madtom	I	I	С		2	4.0	0.37	170	0.25	42.5		
70-001	Brook Silverside	I	М	М		16	32.0	2.94	40	0.06	1.2		
77-003	Rock Bass	С		С	S	4	8.0	0.73	420	0.62	52.5		
77-004	Smallmouth Bass	С	М	С	F	12	24.0	2.20	2100	3.12	87.5		
77-006	Largemouth Bass	С		С	F	6	12.0	1.10	520	0.77	43.3		
77-008	Green Sunfish	I	Т	С	S	14	28.0	2.57	620	0.92	22.1		
77-009	Bluegill Sunfish	I	Р	С	S	13	26.0	2.39	250	0.37	9.6		
77-013	Pumpkinseed Sunfish	I	Р	С	S	1	2.0	0.18	10	0.01	5.0		
80-001	Sauger	Р		S	F	2	4.0	0.37	1700	2.52	425.0		
80-005	Blackside Darter	I		S	D	5	10.0	0.92	40	0.06	4.0		
80-011	Logperch	I	М	S	D	12	24.0	2.20	340	0.50	14.1		
80-014	Johnny Darter	I		С	D	3	6.0	0.55	10	0.01	1.6		
No Spec	cies: 25 Nat. Spec	cies: 24	Hybrids	s: 0		Total Co	ounted:	545 T	otal Rel. V	Vt. :	67364		

36.0

Mlwb: 9.4

	Appene	dix Tab			dwest becies	Biodive List	ersity	Institu	ute		
Site II	D: 13-1 River: 95	-656 D	esPlaines	s River			RM	: 94.20	Date:	06/22/20)22
Time	Fished: 1901 D	istance:	0.500	Dr	ainge (so	q mi):	232.0	Dep	oth:	0	
Locati	ion: dst. Belvidere Rd.					L	.at: 42	2.34354	Long:	-87.941()5
Species Code:	Species Name:	Feed Guild	Toler- ance	Breed Guild	IBI Group	No. Fish	Rel. No.	% by No.	Rel. Wt.	% by Wt.	Av. Wt.
37-003	Northern Pike	Р		М	F	2	4.0	0.78	7200	9.35	1800.0
40-016	White Sucker	0	Т	S	W	40	80.0	15.69	23400	30.39	292.5
43-001	Common Carp	0	Т	М	G	14	28.0	5.49	32700	42.47	1167.8
43-004	Hornyhead Chub	I	Ι	Ν	Ν	110	220.0	43.14	3380	4.39	15.3
43-022	Rosyface Shiner	I	Ι	S	Ν	14	28.0	5.49	60	0.08	2.1
43-032	Spotfin Shiner	I		М	Ν	17	34.0	6.67	200	0.26	5.8
43-043	Bluntnose Minnow	0	Т	С	Ν	9	18.0	3.53	60	0.08	3.3
43-044	Central Stoneroller	Н		Ν	Ν	1	2.0	0.39	10	0.01	5.0
47-002	Channel Catfish			С	F	3	6.0	1.18	4000	5.20	666.6
47-004	Yellow Bullhead	I	Т	С		1	2.0	0.39	400	0.52	200.0
47-008	Stonecat Madtom	I	Ι	С		1	2.0	0.39	120	0.16	60.0
54-002	Blackstripe Topminnow	I		М		2	4.0	0.78	4	0.01	1.0
77-003	Rock Bass	С		С	S	3	6.0	1.18	940	1.22	156.6
77-004	Smallmouth Bass	С	М	С	F	5	10.0	1.96	320	0.42	32.0
77-006	Largemouth Bass	С		С	F	3	6.0	1.18	2600	3.38	433.3
77-009	Bluegill Sunfish	I	Р	С	S	23	46.0	9.02	1500	1.95	32.6
77-010	Orangespotted Sunfish	I		С	S	1	2.0	0.39	10	0.01	5.0
77-013	Pumpkinseed Sunfish	I	Р	С	S	1	2.0	0.39	40	0.05	20.0
80-005	Blackside Darter	I		S	D	4	8.0	1.57	30	0.04	3.7
80-011	Logperch	I	М	S	D	1	2.0	0.39	20	0.03	10.0
No Spec IBI:	cies: 20 Nat. Specie 36.0 Mlwb:	es: 19 7.6	Hybrids	: 0		Total Co	unted:	255 T	otal Rel. V	Vt. :	76994

Appendix Table A-4. Midwest Biodiversity Institute Fish Species List												
Site ID	0: 13-1 River: 95-6	56 D	esPlaines	•			RM:	94.20	Date:	09/29/20)22	
Time F	Fished: 3089 Dist	tance:	0.500	Dr	ainge (sq	mi):	232.0	Dep	oth:	0		
Locati	on: dst. Belvidere Rd.					L	.at: 42.	.34354	Long:	-87.9410)5	
Species Code:	Species Name:	Feed Guild	Toler- ance	Breed Guild	IBI Group	No. Fish	Rel. No.	% by No.	Rel. Wt.	% by Wt.	Av. Wt.	
37-003	Northern Pike	Р		М	F	3	6.0	0.88	6150	6.51	1025.0	
40-016	White Sucker	0	Т	S	W	31	62.0	9.06	28600	30.29	461.2	
40-018	Spotted Sucker	I		S	R	7	14.0	2.05	14900	15.78	1064.2	
43-001	Common Carp	0	Т	М	G	5	10.0	1.46	14000	14.83	1400.0	
43-004	Hornyhead Chub	I	I	Ν	Ν	129	258.0	37.72	4400	4.66	17.0	
43-022	Rosyface Shiner	I	I	S	Ν	15	30.0	4.39	80	0.08	2.6	
43-026	Common Shiner	I		S	Ν	1	2.0	0.29	4	0.00	2.0	
43-028	Spottail Shiner	I	Р	М	Ν	2	4.0	0.58	20	0.02	5.0	
43-032	Spotfin Shiner	I		М	Ν	21	42.0	6.14	140	0.15	3.3	
43-043	Bluntnose Minnow	0	Т	С	Ν	25	50.0	7.31	150	0.16	3.0	
43-044	Central Stoneroller	н		Ν	Ν	1	2.0	0.29	4	0.00	2.0	
47-002	Channel Catfish			С	F	2	4.0	0.58	8300	8.79	2075.0	
47-013	Tadpole Madtom	I		С		1	2.0	0.29	4	0.00	2.0	
54-002	Blackstripe Topminnow	I		М		4	8.0	1.17	8	0.01	1.0	
70-001	Brook Silverside	I	М	М		1	2.0	0.29	2	0.00	1.0	
77-002	Black Crappie	I		С	S	8	16.0	2.34	3850	4.08	240.6	
77-003	Rock Bass	С		С	S	4	8.0	1.17	360	0.38	45.0	
77-004	Smallmouth Bass	С	М	С	F	15	30.0	4.39	5290	5.60	176.3	
77-006	Largemouth Bass	С		С	F	13	26.0	3.80	7160	7.58	275.3	
77-008	Green Sunfish	I	т	С	S	1	2.0	0.29	90	0.10	45.0	
77-009	Bluegill Sunfish	I	Р	С	S	19	38.0	5.56	360	0.38	9.4	
77-013	Pumpkinseed Sunfish	I	Р	С	S	3	6.0	0.88	200	0.21	33.3	
80-005	Blackside Darter	I		S	D	9	18.0	2.63	80	0.08	4.4	
80-011	Logperch	I	М	S	D	19	38.0	5.56	250	0.26	6.5	
80-014	Johnny Darter	1		С	D	3	6.0	0.88	6	0.01	1.0	
No Spec	ies: 25 Nat. Species:	24	Hybrids	: 0		Total Co	unted:	342 T	otal Rel. V	Vt. :	94408	

42.0

Mlwb: 9.5

Site ID): 13-16 River: 9	95-656 D	Fis esPlaines	-	<u>ecies</u>	List	RM	: 90.60	Date:	06/22/20)22
	Fished: 2553	Distance:	0.500	Dra	ainge (so	mi):	253.7	Der	oth:	0	
	on: dst. Buckley Rd.					,		2.30575	Long:	-87.954	56
Species Code:	Species Name:	Feed Guild	Toler- ance	Breed Guild	IBI Group	No. Fish	Rel. No.	% by No.	Rel. Wt.	% by Wt.	Av. Wt.
37-003	Northern Pike	Р		М	F	1	2.0	0.41	0	0.00	0.0
40-016	White Sucker	0	Т	S	W	69	138.0	28.40	16500	48.91	119.5
40-018	Spotted Sucker	I		S	R	1	2.0	0.41	2600	7.71	1300.0
43-001	Common Carp	0	Т	М	G	5	10.0	2.06	9200	27.27	920.0
43-004	Hornyhead Chub	I	Ι	Ν	Ν	81	162.0	33.33	1500	4.45	9.2
43-022	Rosyface Shiner	I	Ι	S	Ν	20	40.0	8.23	100	0.30	2.5
43-028	Spottail Shiner	I	Р	М	Ν	3	6.0	1.23	20	0.06	3.3
43-034	Sand Shiner	I	М	М	Ν	1	2.0	0.41	6	0.02	3.0
43-043	Bluntnose Minnow	0	Т	С	Ν	19	38.0	7.82	100	0.30	2.6
47-002	Channel Catfish			С	F	1	2.0	0.41	0	0.00	0.0
47-004	Yellow Bullhead	I	Т	С		5	10.0	2.06	1320	3.91	132.0
77-003	Rock Bass	С		С	S	6	12.0	2.47	720	2.13	60.0
77-004	Smallmouth Bass	С	М	С	F	2	4.0	0.82	120	0.36	30.0
77-006	Largemouth Bass	С		С	F	3	6.0	1.23	260	0.77	43.3
77-008	Green Sunfish	I	Т	С	S	1	2.0	0.41	16	0.05	8.0
77-009	Bluegill Sunfish	I	Р	С	S	17	34.0	7.00	1040	3.08	30.5
77-013	Pumpkinseed Sunfish	I	Р	С	S	3	6.0	1.23	200	0.59	33.3
80-005	Blackside Darter	I		S	D	4	8.0	1.65	20	0.06	2.5
80-011	Logperch	I	М	S	D	1	2.0	0.41	10	0.03	5.0
No Spec		· · ·	Hybrids			Total Co			Total Rel. V		33732

Site ID	D: 13-16 River: 95-65	6 D	esPlaines	s River	-		RM:	90.60	Date:	09/28/20	022
Time l	Fished: 2561 Dista	nce:	0.500	Dr	ainge (so	ן mi):	253.7	Dep	oth:	0	
Locati	ion: dst. Buckley Rd.					L	at: 42	.30575	Long:	-87.954	56
Species Code:	Species Name:	Feed Guild	Toler- ance	Breed Guild	IBI Group	No. Fish	Rel. No.	% by No.	Rel. Wt.	% by Wt.	Av. Wt.
37-003	Northern Pike	Р		М	F	3	6.0	0.98	3540	3.88	590.0
40-016	White Sucker	0	Т	S	W	26	52.0	8.52	21620	23.72	415.
43-001	Common Carp	0	Т	Μ	G	5	10.0	1.64	49900	54.74	4990.0
43-003	Golden Shiner	I.	Т	М	Ν	1	2.0	0.33	120	0.13	60.0
43-004	Hornyhead Chub	I	Ι	Ν	Ν	124	248.0	40.66	4400	4.83	17.
43-022	Rosyface Shiner	I	Ι	S	Ν	5	10.0	1.64	20	0.02	2.0
43-032	Spotfin Shiner	I.		М	Ν	22	44.0	7.21	80	0.09	1.8
43-043	Bluntnose Minnow	0	Т	С	Ν	54	108.0	17.70	280	0.31	2.5
47-002	Channel Catfish			С	F	1	2.0	0.33	3400	3.73	1700.0
47-004	Yellow Bullhead	I	Т	С		2	4.0	0.66	300	0.33	75.0
54-002	Blackstripe Topminnow	I		М		7	14.0	2.30	10	0.01	0.7
77-003	Rock Bass	С		С	S	9	18.0	2.95	1380	1.51	76.6
77-004	Smallmouth Bass	С	М	С	F	16	32.0	5.25	3960	4.34	123.
77-006	Largemouth Bass	С		С	F	6	12.0	1.97	880	0.97	73.3
77-008	Green Sunfish	I	т	С	S	4	8.0	1.31	200	0.22	25.0
77-009	Bluegill Sunfish	Ι	Р	С	S	8	16.0	2.62	1020	1.12	63.
30-005	Blackside Darter	Ι		S	D	2	4.0	0.66	40	0.04	10.0
80-014	Johnny Darter	I.		С	D	10	20.0	3.28	10	0.01	0.5

	Appendix	k Tab			dwest becies		ersity	Instit	ute		
Site ID	0: 16-6 River: 95-65	i6 D	esPlaines	•			RM:	87.10	Date:	06/22/20)22
Time I	Fished: 2705 Dista	ance:	0.500	Dr	ainge (so	q mi):	261.4	Dep	oth:	0	
Locati	on: dst. Rockland Rd.					L	at: 42	.27629	Long:	-87.9392	25
Species Code:	Species Name:	Feed Guild	Toler- ance	Breed Guild	IBI Group	No. Fish	Rel. No.	% by No.	Rel. Wt.	% by Wt.	Av. Wt.
15-001	Bowfin	Р		С		1	2.0	0.41	5800	7.01	2900.0
37-003	Northern Pike	Р		М	F	7	14.0	2.89	18000	21.77	1285.7
40-016	White Sucker	0	т	S	W	29	58.0	11.98	16800	20.32	289.6
43-001	Common Carp	0	Т	М	G	9	18.0	3.72	35800	43.30	1988.8
43-004	Hornyhead Chub	I	I	Ν	Ν	64	128.0	26.45	1400	1.69	10.9
43-013	Creek Chub	G	т	Ν	Ν	1	2.0	0.41	16	0.02	8.0
43-022	Rosyface Shiner	I	I	S	Ν	23	46.0	9.50	80	0.10	1.7
43-028	Spottail Shiner	I	Р	М	Ν	2	4.0	0.83	20	0.02	5.0
43-032	Spotfin Shiner	I		М	Ν	13	26.0	5.37	100	0.12	3.8
43-034	Sand Shiner	I	М	М	Ν	11	22.0	4.55	40	0.05	1.8
43-043	Bluntnose Minnow	0	Т	С	Ν	23	46.0	9.50	140	0.17	3.0
43-044	Central Stoneroller	Н		Ν	Ν	1	2.0	0.41	10	0.01	5.0
47-002	Channel Catfish			С	F	1	2.0	0.41	40	0.05	20.0
47-004	Yellow Bullhead	I	Т	С		2	4.0	0.83	40	0.05	10.0
47-008	Stonecat Madtom	I	I	С		1	2.0	0.41	80	0.10	40.0
77-003	Rock Bass	С		С	S	9	18.0	3.72	1260	1.52	70.0
77-004	Smallmouth Bass	С	М	С	F	2	4.0	0.83	120	0.15	30.0
77-006	Largemouth Bass	С		С	F	3	6.0	1.24	1040	1.26	173.3
77-009	Bluegill Sunfish	I	Р	С	S	30	60.0	12.40	1640	1.98	27.3
77-013	Pumpkinseed Sunfish	I	Р	С	S	2	4.0	0.83	50	0.06	12.5
77-015	Green X Bluegill Sunfish					2	4.0	0.83	140	0.17	35.0
80-005	Blackside Darter	I		S	D	1	2.0	0.41	8	0.01	4.0
80-011	Logperch	I	М	S	D	5	10.0	2.07	60	0.07	6.0
No Spec	ies: 22 Nat. Species:	21	Hybrids	: 1		Total Co	unted:	242 T	otal Rel. V	Vt. :	82684

IBI: 34.0 **MI**

Mlwb: 8.3

	Append	dix Tab			dwest becies		ersity	Instit	ute		
Site II	D: 16-6 River: 95	-656 Do	esPlaine	s River	-		RM:	87.10	Date:	09/29/20)22
Time	Fished: 2782 D	istance:	0.500	Dr	ainge (sq	mi):	261.4	Dep	oth:	0	
Locati	ion: dst. Rockland Rd.					La	at: 42	.27629	Long:	-87.9392	25
Species Code:	Species Name:	Feed Guild	Toler- ance	Breed Guild	IBI Group	No. Fish	Rel. No.	% by No.	Rel. Wt.	% by Wt.	Av. Wt.
10-004	Longnose Gar	Р		М		1	2.0	0.30	200	0.39	100.0
37-003	Northern Pike	Р		М	F	7	14.0	2.10	18500	35.89	1321.4
40-016	White Sucker	0	Т	S	W	11	22.0	3.29	6860	13.31	311.8
43-001	Common Carp	0	Т	М	G	5	10.0	1.50	14440	28.01	1444.0
43-003	Golden Shiner	I	Т	М	Ν	1	2.0	0.30	4	0.01	2.0
43-004	Hornyhead Chub	I	I	Ν	Ν	85	170.0	25.45	2860	5.55	16.8
43-022	Rosyface Shiner	I	I	S	Ν	43	86.0	12.87	240	0.47	2.7
43-032	Spotfin Shiner	I		М	Ν	30	60.0	8.98	120	0.23	2.0
43-043	Bluntnose Minnow	0	Т	С	Ν	70	140.0	20.96	280	0.54	2.0
47-002	Channel Catfish			С	F	1	2.0	0.30	6	0.01	3.0
47-004	Yellow Bullhead	I	Т	С		6	12.0	1.80	550	1.07	45.8
54-002	Blackstripe Topminnow	I		М		9	18.0	2.69	10	0.02	0.5
77-002	Black Crappie	I.		С	S	2	4.0	0.60	480	0.93	120.0
77-003	Rock Bass	С		С	S	23	46.0	6.89	2160	4.19	46.9
77-004	Smallmouth Bass	С	М	С	F	12	24.0	3.59	2220	4.31	92.5
77-006	Largemouth Bass	С		С	F	8	16.0	2.40	1650	3.20	103.1
77-008	Green Sunfish	I	Т	С	S	9	18.0	2.69	440	0.85	24.4
77-009	Bluegill Sunfish	I	Р	С	S	8	16.0	2.40	500	0.97	31.2
80-005	Blackside Darter	I		S	D	2	4.0	0.60	30	0.06	7.5
80-014	Johnny Darter	I		С	D	1	2.0	0.30	2	0.00	1.0

No Species: 20 Nat. Species:

IBI: 38.0

Mlwb: 8.7

19 **Hybrids:** 0

51552

Total Counted:

334 Total Rel. Wt. :

	Apper	ndix Tab			dwest Decies		ersity	Institu	ute		
Site ID	D: 16-7 River: 9	95-656 D	esPlaines	•			RM:	84.60	Date:	06/21/20)22
Time I	Fished: 3005	Distance:	0.500	Dr	ainge (sq	mi):	266.4	Dep	oth:	0	
Locati	ion: ust. dam site					L	at: 42	.25085	Long:	-87.9395	57
Species Code:	Species Name:	Feed Guild	Toler- ance	Breed Guild	IBI Group	No. Fish	Rel. No.	% by No.	Rel. Wt.	% by Wt.	Av. Wt.
40-016	White Sucker	0	Т	S	W	22	44.0	6.61	11940	23.73	271.3
40-018	Spotted Sucker	I		S	R	1	2.0	0.30	3800	7.55	1900.0
43-001	Common Carp	0	Т	М	G	23	46.0	6.91	28000	55.66	608.6
43-004	Hornyhead Chub	I	I	Ν	Ν	33	66.0	9.91	780	1.55	11.8
43-022	Rosyface Shiner	I	I	S	Ν	27	54.0	8.11	120	0.24	2.2
43-028	Spottail Shiner	I	Р	М	Ν	9	18.0	2.70	110	0.22	6.1
43-032	Spotfin Shiner	I		М	Ν	24	48.0	7.21	200	0.40	4.1
43-033	Bigmouth Shiner	I		М	Ν	5	10.0	1.50	20	0.04	2.0
43-034	Sand Shiner	I	М	М	Ν	91	182.0	27.33	420	0.83	2.3
43-043	Bluntnose Minnow	0	Т	С	Ν	37	74.0	11.11	260	0.52	3.5
47-006	Black Bullhead	I	Р	С		1	2.0	0.30	600	1.19	300.0
54-002	Blackstripe Topminnow	I		М		1	2.0	0.30	2	0.00	1.0
77-002	Black Crappie	I		С	S	4	8.0	1.20	700	1.39	87.5
77-004	Smallmouth Bass	С	М	С	F	4	8.0	1.20	220	0.44	27.5
77-006	Largemouth Bass	С		С	F	2	4.0	0.60	440	0.87	110.0
77-008	Green Sunfish	I	Т	С	S	4	8.0	1.20	160	0.32	20.0
77-009	Bluegill Sunfish	I	Р	С	S	28	56.0	8.41	1700	3.38	30.3
77-013	Pumpkinseed Sunfish	I	Р	С	S	11	22.0	3.30	300	0.60	13.6
80-001	Sauger	Р		S	F	1	2.0	0.30	420	0.83	210.0
80-005	Blackside Darter	I		S	D	1	2.0	0.30	6	0.01	3.0
80-011	Logperch	<u> </u>	М	S	D	4	8.0	1.20	110	0.22	13.7
No Spec IBI:	cies: 21 Nat. Spec 36.0 Mlwb:	cies: 20	Hybrids	: 0		Total Co	unted:	333 T	fotal Rel. V	Vt. :	50308

	Арре	ndix Tab					ersity	Instit	ute		
Site ID	0: 16-7 River:	95-656 D	<u>F1</u> esPlaine	•	<u>pecies</u>	LISC	RM:	84.60	Date:	09/27/20)22
Time I	Fished: 2633	Distance:	0.500	Dr	ainge (sc	ı mi):	266.4	Dep	oth:	0	
Locati	on: ust. dam site					L	at: 42.	25085	Long:	-87.9395	57
Species Code:	Species Name:	Feed Guild	Toler- ance	Breed Guild	IBI Group	No. Fish	Rel. No.	% by No.	Rel. Wt.	% by Wt.	Av. Wt.
20-003	Gizzard Shad	0		М		1	2.0	0.41	10	0.01	5.0
37-003	Northern Pike	Р		М	F	4	8.0	1.64	9900	14.37	1237.5
40-016	White Sucker	0	т	S	W	22	44.0	9.02	12520	18.18	284.5
40-018	Spotted Sucker	I		S	R	2	4.0	0.82	3600	5.23	900.0
43-001	Common Carp	0	т	М	G	20	40.0	8.20	22200	32.23	555.0
43-004	Hornyhead Chub	I	I	Ν	Ν	28	56.0	11.48	500	0.73	8.9
43-022	Rosyface Shiner	I	I	S	Ν	4	8.0	1.64	20	0.03	2.5
43-025	Striped Shiner	I		S	Ν	1	2.0	0.41	6	0.01	3.0
43-028	Spottail Shiner	I	Р	М	Ν	1	2.0	0.41	20	0.03	10.0
43-032	Spotfin Shiner	I		М	Ν	47	94.0	19.26	300	0.44	3.1
43-034	Sand Shiner	I	М	М	Ν	10	20.0	4.10	30	0.04	1.5
43-043	Bluntnose Minnow	0	т	С	Ν	36	72.0	14.75	120	0.17	1.6
47-002	Channel Catfish			С	F	3	6.0	1.23	7500	10.89	1250.0
47-004	Yellow Bullhead	I	т	С		2	4.0	0.82	560	0.81	140.0
54-002	Blackstripe Topminnow	I		М		3	6.0	1.23	8	0.01	1.3
77-002	Black Crappie	I		С	S	1	2.0	0.41	240	0.35	120.0
77-003	Rock Bass	С		С	S	4	8.0	1.64	1000	1.45	125.0
77-004	Smallmouth Bass	С	М	С	F	10	20.0	4.10	1680	2.44	84.0
77-006	Largemouth Bass	С		С	F	12	24.0	4.92	4860	7.06	202.5
77-008	Green Sunfish	I	т	С	S	4	8.0	1.64	140	0.20	17.5
77-009	Bluegill Sunfish	I	Р	С	S	18	36.0	7.38	600	0.87	16.6
80-001	Sauger	Р		S	F	2	4.0	0.82	3000	4.36	750.0
80-011	Logperch	I	М	S	D	6	12.0	2.46	50	0.07	4.1
80-014	Johnny Darter	I		С	D	1	2.0	0.41	2	0.00	1.0
87-001	Round Goby				Е	2	4.0	0.82	10	0.01	2.5
No Spec	ies: 25 Nat. Spe	cies : 23	Hybrids	s: 0		Total Co	unted:	244 T	otal Rel. V	Vt. :	68876

32.0

Mlwb: 8.6

Appendix Table A-4. Midwest Biodiversity Institute Fish Species List

Site ID:	16-5	River	: 95-656	DesPlaines F	River		RM:	83.60	[Date: 06/21/2022	
Time Fish	ed:	2213	Distance:	0.500	Drainge (sq mi):	26	68.0	De	pth:	0	
Location:	dst. E	E. Townli	ne Rd.			Lat:	42.	24028	Lon	g: -87.93909	

Species Code:	Species Name:	Feed Guild	Toler- ance	Breed Guild	IBI Group	No. Fish	Rel. No.	% by No.	Rel. Wt.	% by Wt.	Av. Wt.
15-001	Bowfin	Р		С	•	1	2.0	0.96	3400	6.73	1700.0
37-003	Northern Pike	Р		М	F	2	4.0	1.92	5600	11.08	1400.0
40-016	White Sucker	0	т	S	W	12	24.0	11.54	8520	16.86	355.0
40-018	Spotted Sucker	I		S	R	5	10.0	4.81	7400	14.65	740.0
43-001	Common Carp	0	т	М	G	13	26.0	12.50	21800	43.15	838.4
43-028	Spottail Shiner	I	Р	М	Ν	8	16.0	7.69	100	0.20	6.2
43-032	Spotfin Shiner	I		М	Ν	1	2.0	0.96	10	0.02	5.0
43-034	Sand Shiner	I	М	М	Ν	1	2.0	0.96	6	0.01	3.0
43-043	Bluntnose Minnow	0	т	С	Ν	4	8.0	3.85	20	0.04	2.5
47-004	Yellow Bullhead	I	т	С		1	2.0	0.96	220	0.44	110.0
77-003	Rock Bass	С		С	S	3	6.0	2.88	520	1.03	86.6
77-004	Smallmouth Bass	С	М	С	F	3	6.0	2.88	240	0.48	40.0
77-006	Largemouth Bass	С		С	F	3	6.0	2.88	100	0.20	16.6
77-008	Green Sunfish	I	т	С	S	5	10.0	4.81	220	0.44	22.0
77-009	Bluegill Sunfish	I	Р	С	S	30	60.0	28.85	1960	3.88	32.6
77-013	Pumpkinseed Sunfish	I	Р	С	S	11	22.0	10.58	400	0.79	18.1
80-011	Logperch	I	М	S	D	1	2.0	0.96	10	0.02	5.0

IBI: 32.0

Mlwb: 7.5

Site II	D: 16-5 River: 95	5-656 D	esPlaine	es River	-		RM:	83.60	Date:	09/27/20)22
Time	Fished: 2205 D	istance:	0.500) Dr	ainge (so	ı mi):	268.0	Dep	oth:	0	
Locati	ion: dst. E. Townline I	Rd.				L	at: 42	.24028	Long:	-87.9390)9
Species		E	Talan	Draad		No.				0(h	
Code:	Species Name:	Feed Guild	Toler- ance	Breed Guild	IBI Group	Fish	Rel. No.	% by No.	Rel. Wt.	% by Wt.	Av. Wt.
37-003	Northern Pike	P		M	F	2	4.0	0.78	3000	4.71	750.0
40-016	White Sucker	0	т	S	W	29	58.0	11.37	19600	30.78	337.9
40-018	Spotted Sucker	I		S	R	4	8.0	1.57	6650	10.44	831.2
43-001	Common Carp	0	т	М	G	12	24.0	4.71	20400	32.03	850.0
43-004	Hornyhead Chub	I	I	Ν	Ν	8	16.0	3.14	420	0.66	26.2
43-022	Rosyface Shiner	I	I	S	Ν	7	14.0	2.75	30	0.05	2.1
43-028	Spottail Shiner	I	Р	М	Ν	1	2.0	0.39	10	0.02	5.0
43-032	Spotfin Shiner	I		М	Ν	9	18.0	3.53	40	0.06	2.2
43-034	Sand Shiner	I	М	М	Ν	2	4.0	0.78	8	0.01	2.0
43-043	Bluntnose Minnow	0	Т	С	Ν	48	96.0	18.82	180	0.28	1.8
47-004	Yellow Bullhead	I	Т	С		6	12.0	2.35	1820	2.86	151.6
54-002	Blackstripe Topminnow	I		М		6	12.0	2.35	12	0.02	1.0
77-003	Rock Bass	С		С	S	4	8.0	1.57	320	0.50	40.0
77-004	Smallmouth Bass	С	М	С	F	11	22.0	4.31	1150	1.81	52.2
77-006	Largemouth Bass	С		С	F	16	32.0	6.27	6580	10.33	205.6
77-008	Green Sunfish	I	Т	С	S	39	78.0	15.29	1100	1.73	14.1
77-009	Bluegill Sunfish	I	Р	С	S	38	76.0	14.90	2040	3.20	26.8
77-013	Pumpkinseed Sunfish	I	Р	С	S	2	4.0	0.78	100	0.16	25.0
80-003	Yellow Perch			М		1	2.0	0.39	130	0.20	65.0
80-005	Blackside Darter	I		S	D	2	4.0	0.78	10	0.02	2.5
80-011	Logperch	I	М	S	D	6	12.0	2.35	80	0.13	6.6
80-014	Johnny Darter	I		С	D	1	2.0	0.39	2	0.00	1.0
87-001	Round Goby				Е	1	2.0	0.39	6	0.01	3.0

IBI: 34.0

Mlwb: 8.3

02/08/2024

	Appen	dix Tab					ersity	Instit	ute		
Site ID	D: 16-8 River: 9	5-656 D	E I: esPlaines	-	<u>pecies</u>	LISU	RM:	82.90	Date:	06/21/20)22
Time I	Fished: 2547 I	Distance:	0.500	Dr	ainge (so	ı mi):	268.9	Dep	oth:	0	
Locati	ion: ust. dam					L	.at: 42	.23111	Long:	-87.9343	30
Species Code:	Species Name:	Feed Guild	Toler- ance	Breed Guild	IBI Group	No. Fish	Rel. No.	% by No.	Rel. Wt.	% by Wt.	Av. Wt.
37-003	Northern Pike	Р		М	F	1	2.0	0.64	1700	2.76	850.0
40-016	White Sucker	0	Т	S	W	20	40.0	12.82	14820	24.07	370.5
40-018	Spotted Sucker	I		S	R	5	10.0	3.21	7600	12.35	760.0
43-001	Common Carp	0	Т	М	G	19	38.0	12.18	27400	44.51	721.0
43-004	Hornyhead Chub	I	I	Ν	Ν	2	4.0	1.28	60	0.10	15.0
43-022	Rosyface Shiner	I	I	S	Ν	2	4.0	1.28	8	0.01	2.0
43-028	Spottail Shiner	I	Р	М	Ν	5	10.0	3.21	40	0.06	4.0
43-032	Spotfin Shiner	I		М	Ν	8	16.0	5.13	80	0.13	5.0
43-034	Sand Shiner	I	М	М	Ν	14	28.0	8.97	40	0.06	1.4
43-043	Bluntnose Minnow	0	т	С	Ν	8	16.0	5.13	40	0.06	2.5
47-004	Yellow Bullhead	I	т	С		1	2.0	0.64	600	0.97	300.0
47-007	Flathead Catfish	Р		С	F	1	2.0	0.64	0	0.00	0.0
54-002	Blackstripe Topminnow	I		М		1	2.0	0.64	2	0.00	1.0
77-002	Black Crappie	I		С	S	1	2.0	0.64	120	0.19	60.0
77-004	Smallmouth Bass	С	М	С	F	6	12.0	3.85	680	1.10	56.6
77-006	Largemouth Bass	С		С	F	4	8.0	2.56	3400	5.52	425.0
77-008	Green Sunfish	I	Т	С	S	2	4.0	1.28	20	0.03	5.0
77-009	Bluegill Sunfish	I	Р	С	S	48	96.0	30.77	2800	4.55	29.1
77-013	Pumpkinseed Sunfish	I	Р	С	S	4	8.0	2.56	170	0.28	21.2
77-015	Green X Bluegill Sunfish					2	4.0	1.28	160	0.26	40.0
80-001	Sauger	Р		S	F	1	2.0	0.64	1800	2.92	900.0
80-011	Logperch	I	М	S	D	1	2.0	0.64	20	0.03	10.0
No Spec IBI:	cies: 21 Nat. Speci 32.0 Mlwb:	i es: 20 7.4	Hybrids	: 1		Total Co	unted:	156 T	otal Rel. V	Vt. :	61560

	Арре	ndix Tab			dwest becies		ersity	Institu	ute		
Site ID	D: 16-8 River:	95-656 D	esPlaine				RM:	82.90	Date:	09/27/20)22
Time I	Fished: 2373	Distance:	0.500	Dr	ainge (so	ı mi):	268.9	Dep	oth:	0	
Locati	ion: ust. dam					I	Lat: 42	.23111	Long:	-87.9343	30
Species Code:	Species Name:	Feed Guild	Toler- ance	Breed Guild	IBI Group	No. Fish	Rel. No.	% by No.	Rel. Wt.	% by Wt.	Av. Wt.
10-004	Longnose Gar	Р		М		1	2.0	0.39	200	0.23	100.0
37-003	Northern Pike	Р		М	F	1	2.0	0.39	2700	3.10	1350.0
40-016	White Sucker	0	Т	S	W	50	100.0	19.53	24190	27.76	241.9
40-018	Spotted Sucker	I		S	R	2	4.0	0.78	2800	3.21	700.0
43-001	Common Carp	0	Т	М	G	13	26.0	5.08	32500	37.30	1250.0
43-004	Hornyhead Chub	I	I	Ν	Ν	2	4.0	0.78	120	0.14	30.0
43-028	Spottail Shiner	I	Р	М	Ν	1	2.0	0.39	30	0.03	15.0
43-034	Sand Shiner	I	М	М	Ν	1	2.0	0.39	6	0.01	3.0
43-043	Bluntnose Minnow	0	т	С	Ν	29	58.0	11.33	220	0.25	3.7
47-002	Channel Catfish			С	F	2	4.0	0.78	12200	14.00	3050.0
47-004	Yellow Bullhead	I	т	С		1	2.0	0.39	580	0.67	290.0
53-032						49	98.0	19.14	220	0.25	2.2
54-002	Blackstripe Topminnow	I		М		5	10.0	1.95	10	0.01	1.0
77-002	Black Crappie	I		С	S	3	6.0	1.17	1470	1.69	245.0
77-003	Rock Bass	С		С	S	6	12.0	2.34	430	0.49	35.8
77-004	Smallmouth Bass	С	М	С	F	12	24.0	4.69	900	1.03	37.5
77-006	Largemouth Bass	С		С	F	13	26.0	5.08	3920	4.50	150.7
77-008	Green Sunfish	I	т	С	S	4	8.0	1.56	140	0.16	17.5
77-009	Bluegill Sunfish	I	Р	С	S	54	108.0	21.09	4100	4.71	37.9
77-013	Pumpkinseed Sunfish	I	Р	С	S	3	6.0	1.17	330	0.38	55.0
80-005	Blackside Darter	I		S	D	2	4.0	0.78	20	0.02	5.0
80-011	Logperch	I	М	S	D	1	2.0	0.39	2	0.00	1.0
87-001	Round Goby				Е	1	2.0	0.39	50	0.06	25.0
No Spec	cies: 23 Nat. Spe	cies: 21	Hybrids	s: 0		Total Co	ounted:	256 1	ſotal Rel. V	Vt. :	87138

IBI: 32.0

Mlwb: 8.2

02/08/2024

	Appendi	x Tab			dwest becies		ersity	[,] Institu	ute		
Site II	D: 16-4 River: 95-6	56 D	esPlaines	-			RM	: 80.00	Date:	06/27/20	22
Time I	Fished: 1342 Dist	ance:	0.200	Dr	ainge (sc	ı mi):	273.2	2 Dep	oth:	0	
Locati	ion: dst. Half Day Rd.					L	at: 42	2.19816	Long:	-87.9191	1
Species Code:	Species Name:	Feed Guild	Toler- ance	Breed Guild	IBI Group	No. Fish	Rel. No.	% by No.	Rel. Wt.	% by Wt.	Av. Wt.
10-004	Longnose Gar	Р		М		1	1.5	0.81	900	11.20	600.0
37-003	Northern Pike	Р		Μ	F	1	1.5	0.81	1425	17.73	950.0
40-016	White Sucker	0	Т	S	W	23	34.5	18.70	1875	23.33	54.3
43-004	Hornyhead Chub	I	I	Ν	Ν	14	21.0	11.38	315	3.92	15.0
43-022	Rosyface Shiner	I	Ι	S	Ν	1	1.5	0.81	3	0.04	2.0
43-032	Spotfin Shiner	I		М	Ν	1	1.5	0.81	3	0.04	2.0
43-034	Sand Shiner	I	М	М	Ν	2	3.0	1.63	6	0.07	2.0
43-043	Bluntnose Minnow	0	Т	С	Ν	2	3.0	1.63	6	0.07	2.0
47-004	Yellow Bullhead	I	Т	С		3	4.5	2.44	540	6.72	120.0
54-002	Blackstripe Topminnow	I		М		2	3.0	1.63	3	0.04	1.0
77-002	Black Crappie	I		С	S	1	1.5	0.81	97	1.21	65.0
77-003	Rock Bass	С		С	S	6	9.0	4.88	105	1.31	11.6
77-006	Largemouth Bass	С		С	F	2	3.0	1.63	1440	17.91	480.0
77-008	Green Sunfish	I	Т	С	S	25	37.5	20.33	270	3.36	7.2
77-009	Bluegill Sunfish	I	Р	С	S	26	39.0	21.14	915	11.38	23.4
77-015	Green X Bluegill Sunfish					1	1.5	0.81	15	0.19	10.0
80-005	Blackside Darter	I		S	D	4	6.0	3.25	15	0.19	2.5
80-011	Logperch	I	М	S	D	5	7.5	4.07	90	1.12	12.0
87-001	Round Goby				Е	3	4.5	2.44	15	0.19	3.3
No Spec IBI:	-	17 7.5	Hybrids	: 1		Total Co	unted:	123 T	otal Rel. V	Vt. :	8038

Mlwb:

Appendix Table A-4. Midwest Biodiversity Institute Fish Species List											
Site II	•						RM: 80.00 Date: 09/30/2022			22	
Time	Fished: 1233 Dis	tance:	nce: 0.200		Drainge (sq mi):			Depth:		0	
Locati	ion: dst. Half Day Rd.					L	at: 42	.19816	Long:	-87.9191	1
Species Code:	Species Name:	Feed Guild	Toler- ance	Breed Guild	IBI Group	No. Fish	Rel. No.	% by No.	Rel. Wt.	% by Wt.	Av. Wt.
40-016	White Sucker	0	Т	S	W	3	4.5	2.68	285	7.47	63.3
43-004	Hornyhead Chub	I	I	Ν	Ν	17	25.5	15.18	420	11.01	16.4
43-032	Spotfin Shiner	I		М	Ν	30	45.0	26.79	172	4.52	3.8
43-043	Bluntnose Minnow	0	т	С	Ν	13	19.5	11.61	52	1.38	2.6
47-004	Yellow Bullhead	I	т	С		4	6.0	3.57	177	4.64	29.5
54-002	Blackstripe Topminnow	I		М		2	3.0	1.79	4	0.12	1.5
77-002	Black Crappie	I		С	S	1	1.5	0.89	45	1.18	30.0
77-003	Rock Bass	С		С	S	1	1.5	0.89	45	1.18	30.0
77-004	Smallmouth Bass	С	М	С	F	3	4.5	2.68	30	0.79	6.6
77-006	Largemouth Bass	С		С	F	3	4.5	2.68	1680	44.03	373.3
77-008	Green Sunfish	I	Т	С	S	20	30.0	17.86	435	11.40	14.5
77-009	Bluegill Sunfish	I	Р	С	S	9	13.5	8.04	412	10.81	30.5
80-011	Logperch	I	М	S	D	1	1.5	0.89	22	0.59	15.0
80-014	Johnny Darter	I		С	D	3	4.5	2.68	4	0.12	1.0
87-001	Round Goby				Е	2	3.0	1.79	30	0.79	10.0
No Species: 15 Nat. Species: 14 Hybrids: 0 Total								ounted: 112 Total Rel. Wt. : 381			

IBI: 34.0 Mlwb:

6.9

	Appen	dix Tab			dwest becies		ersity	Institu	ute		
Site ID	0: 16-3 River: 9	5-656 D	esPlaines	-			RM	: 76.70	Date:	06/26/20)22
Time I	Fished: 2311 I	Distance:	0.500	Dra	ainge (so	ı mi):	314.6	Dep	oth:	0	
Locati	on: dst. Deerfield Rd					L	at: 42	2.16706	Long:	-87.9137	77
Species Code:	Species Name:	Feed Guild	Toler- ance	Breed Guild	IBI Group	No. Fish	Rel. No.	% by No.	Rel. Wt.	% by Wt.	Av. Wt.
37-003	Northern Pike	Р		Μ	F	4	8.0	3.08	8800	19.06	1100.0
40-016	White Sucker	0	Т	S	W	4	8.0	3.08	4120	8.92	515.0
40-018	Spotted Sucker	I		S	R	1	2.0	0.77	1800	3.90	900.0
43-001	Common Carp	0	Т	Μ	G	18	36.0	13.85	22200	48.08	616.6
43-004	Hornyhead Chub	I	I	Ν	Ν	5	10.0	3.85	180	0.39	18.0
43-028	Spottail Shiner	I	Р	Μ	Ν	1	2.0	0.77	10	0.02	5.0
43-032	Spotfin Shiner	I		Μ	Ν	9	18.0	6.92	60	0.13	3.3
43-034	Sand Shiner	I	М	М	Ν	1	2.0	0.77	4	0.01	2.0
43-043	Bluntnose Minnow	0	Т	С	Ν	11	22.0	8.46	100	0.22	4.5
47-004	Yellow Bullhead	I	Т	С		1	2.0	0.77	440	0.95	220.0
54-002	Blackstripe Topminnow	I		Μ		3	6.0	2.31	6	0.01	1.0
77-004	Smallmouth Bass	С	М	С	F	7	14.0	5.38	1040	2.25	74.2
77-006	Largemouth Bass	С		С	F	5	10.0	3.85	4500	9.75	450.0
77-008	Green Sunfish	I	Т	С	S	4	8.0	3.08	80	0.17	10.0
77-009	Bluegill Sunfish	I	Р	С	S	42	84.0	32.31	2500	5.41	29.7
77-013	Pumpkinseed Sunfish	I	Р	С	S	5	10.0	3.85	220	0.48	22.0
80-003	Yellow Perch			М		1	2.0	0.77	40	0.09	20.0
80-005	Blackside Darter	I		S	D	3	6.0	2.31	30	0.06	5.0
87-001	Round Goby				Е	5	10.0	3.85	40	0.09	4.0
No Spec IBI:	ies: 19 Nat. Speci 30.0 Mlwb:	i es: 17 7.3	Hybrids	: 0		Total Cou	unted:	130 T	otal Rel. V	Vt. :	46170

	Appendi	x Tab					ersity	Instit	ute		
Site ID	D: 16-3 River: 95-6	56 D	F19 esPlaines	-	<u>becies</u>	List	RM:	76.70	Date:	10/02/20)22
Time I	Fished: 2449 Dist	tance:	0.500	Dr	ainge (so	ן mi):	314.6	Dep	oth:	0	
Locati	on: dst. Deerfield Rd.					I	Lat: 42	.16706	Long:	-87.913	77
Species Code:	Species Name:	Feed Guild	Toler- ance	Breed Guild	IBI Group	No. Fish	Rel. No.	% by No.	Rel. Wt.	% by Wt.	Av. Wt.
10-004	Longnose Gar	Р		М		1	2.0	0.40	200	0.26	100.0
37-003	Northern Pike	Р		М	F	5	10.0	2.00	12700	16.41	1270.0
40-016	White Sucker	0	т	S	W	20	40.0	8.00	16500	21.31	412.5
40-018	Spotted Sucker	I		S	R	3	6.0	1.20	4600	5.94	766.6
43-001	Common Carp	0	Т	М	G	37	74.0	14.80	23900	30.87	322.9
43-004	Hornyhead Chub	I	I	Ν	Ν	2	4.0	0.80	40	0.05	10.0
43-022	Rosyface Shiner	I	I	S	Ν	4	8.0	1.60	12	0.02	1.5
43-028	Spottail Shiner	I	Р	М	Ν	2	4.0	0.80	40	0.05	10.0
43-032	Spotfin Shiner	I		М	Ν	2	4.0	0.80	4	0.01	1.0
43-043	Bluntnose Minnow	0	Т	С	Ν	42	84.0	16.80	220	0.28	2.6
47-002	Channel Catfish			С	F	2	4.0	0.80	4800	6.20	1200.0
47-004	Yellow Bullhead	I	Т	С		1	2.0	0.40	400	0.52	200.0
54-002	Blackstripe Topminnow	I		М		6	12.0	2.40	10	0.01	0.8
70-001	Brook Silverside	I	М	М		1	2.0	0.40	2	0.00	1.0
77-002	Black Crappie	I		С	S	3	6.0	1.20	1100	1.42	183.3
77-003	Rock Bass	С		С	S	15	30.0	6.00	720	0.93	24.0
77-004	Smallmouth Bass	С	М	С	F	22	44.0	8.80	7040	9.09	160.0
77-006	Largemouth Bass	С		С	F	18	36.0	7.20	2060	2.66	57.2
77-008	Green Sunfish	I	Т	С	S	1	2.0	0.40	20	0.03	10.0
77-009	Bluegill Sunfish	I	Р	С	S	40	80.0	16.00	2540	3.28	31.7
77-013	Pumpkinseed Sunfish	I	Р	С	S	2	4.0	0.80	100	0.13	25.0
77-015	Green X Bluegill Sunfish					1	2.0	0.40	160	0.21	80.0
80-005	Blackside Darter	I		S	D	4	8.0	1.60	40	0.05	5.0
80-011	Logperch	I	М	S	D	3	6.0	1.20	6	0.01	1.0
87-001	Round Goby				Е	13	26.0	5.20	200	0.26	7.6
No Spec	ies: 24 Nat. Species	22	Hybrids	: 1		Total Co	ounted:	250 1	Fotal Rel. V	Vt. :	77414

34.0

IBI:

8.1

Mlwb:

02/08/2024

Site II	D: 16-2 River: 95-65	56 D	esPlaine	s River			RM:	75.40	Date:	06/26/20	022
Time	Fished: 2812 Dista	ance:	0.500	Dr	ainge (sq	mi):	323.9	Dep	oth:	0	
Locati	ion: dst. Lake Cook Rd.					L	at: 42	.15276	Long:	-87.9102	22
Species Code:	Species Name:	Feed Guild	Toler- ance	Breed Guild	IBI Group	No. Fish	Rel. No.	% by No.	Rel. Wt.	% by Wt.	Av. Wt.
40-016	White Sucker	0	Т	S	W	77	154.0	46.39	22400	43.70	145.4
43-001	Common Carp	0	т	М	G	1	2.0	0.60	6000	11.71	3000.0
43-004	Hornyhead Chub	I	I	Ν	Ν	4	8.0	2.41	40	0.08	5.0
43-022	Rosyface Shiner	I	I	S	Ν	3	6.0	1.81	10	0.02	1.6
43-028	Spottail Shiner	I	Р	М	Ν	1	2.0	0.60	10	0.02	5.0
43-032	Spotfin Shiner	I		М	Ν	8	16.0	4.82	80	0.16	5.0
43-034	Sand Shiner	I	М	М	Ν	1	2.0	0.60	4	0.01	2.0
43-043	Bluntnose Minnow	0	т	С	Ν	10	20.0	6.02	60	0.12	3.0
43-045	Common Carp X Goldfish	0	Т		G	1	2.0	0.60	3200	6.24	1600.0
47-002	Channel Catfish			С	F	3	6.0	1.81	11000	21.46	1833.3
47-008	Stonecat Madtom	I	I	С		1	2.0	0.60	20	0.04	10.0
77-003	Rock Bass	С		С	S	8	16.0	4.82	2620	5.11	163.7
77-004	Smallmouth Bass	С	М	С	F	7	14.0	4.22	920	1.79	65.7
77-006	Largemouth Bass	С		С	F	4	8.0	2.41	3220	6.28	402.5
77-008	Green Sunfish	I	т	С	S	4	8.0	2.41	140	0.27	17.5
77-009	Bluegill Sunfish	I	Р	С	S	12	24.0	7.23	600	1.17	25.0
77-013	Pumpkinseed Sunfish	I	Р	С	S	3	6.0	1.81	40	0.08	6.6
80-001	Sauger	Р		S	F	1	2.0	0.60	600	1.17	300.0
80-005	Blackside Darter	I		S	D	3	6.0	1.81	10	0.02	1.6
80-011	Logperch	I	М	S	D	7	14.0	4.22	100	0.20	7.1
87-001	Round Goby				Е	7	14.0	4.22	180	0.35	12.8

			Fi	<u>sh S</u> p	<u>pecies</u>	List					
Site ID	0: 16-2 River: 95-6	56 D	esPlaine	s River	-		RM:	75.40	Date:	10/02/20)22
Time I	Fished: 2415 Dis	tance:	0.500	Dr	ainge (sc	ı mi):	323.9	Dep	oth:	0	
Locati	on: dst. Lake Cook Rd.					L	.at: 42	.15276	Long:	-87.9102	22
Species Code:	Species Name:	Feed Guild	Toler- ance	Breed Guild	IBI Group	No. Fish	Rel. No.	% by No.	Rel. Wt.	% by Wt.	Av. Wt.
37-003	Northern Pike	P	ance	M	F	2	4.0	0.56	3200	4.54	800.0
40-016	White Sucker	0	т	S	Ŵ	22	44.0	6.11	4250	6.02	96.5
40-018	Spotted Sucker	-		S	R	1	2.0	0.28	2300	3.26	1150.0
43-001	Common Carp	0	т	М	G	15	30.0	4.17	26800	37.99	893.3
43-004	Hornyhead Chub	I	I	Ν	Ν	53	106.0	14.72	3760	5.33	35.4
43-022	Rosyface Shiner	I	I	S	Ν	5	10.0	1.39	10	0.01	1.0
43-032	Spotfin Shiner	I		М	Ν	22	44.0	6.11	160	0.23	3.6
43-034	Sand Shiner	I	М	М	Ν	3	6.0	0.83	20	0.03	3.3
43-043	Bluntnose Minnow	0	т	С	Ν	57	114.0	15.83	300	0.43	2.6
47-002	Channel Catfish			С	F	4	8.0	1.11	12810	18.16	1601.2
47-004	Yellow Bullhead	I	т	С		10	20.0	2.78	1500	2.13	75.0
47-013	Tadpole Madtom	I		С		4	8.0	1.11	20	0.03	2.5
54-002	Blackstripe Topminnow	I		М		1	2.0	0.28	2	0.00	1.0
77-003	Rock Bass	С		С	S	33	66.0	9.17	2340	3.32	35.4
77-004	Smallmouth Bass	С	Μ	С	F	18	36.0	5.00	2160	3.06	60.0
77-006	Largemouth Bass	С		С	F	21	42.0	5.83	9320	13.21	221.9
77-008	Green Sunfish	I	Т	С	S	12	24.0	3.33	400	0.57	16.6
77-009	Bluegill Sunfish	I	Р	С	S	7	14.0	1.94	340	0.48	24.2
77-015	Green X Bluegill Sunfish					1	2.0	0.28	60	0.09	30.0
80-005	Blackside Darter	I		S	D	4	8.0	1.11	60	0.09	7.5
80-011	Logperch	I	М	S	D	28	56.0	7.78	460	0.65	8.2
80-014	Johnny Darter	I		С	D	7	14.0	1.94	20	0.03	1.4
87-001	Round Goby				Е	30	60.0	8.33	260	0.37	4.3

IBI: 32.0

Mlwb: 8.8

Site II	D: 16-1 River: 95-6	56 D	esPlaine	s River	-		RM:	71.70	Date:	06/23/20)22
Time	Fished: 2012 Dis	tance:	0.500	Dr	ainge (sq	mi):	358.7	Dep	oth:	0	
Locati	ion: ust. E. Palatine Rd.					L	at: 42	.11399	Long:	-87.8892	23
Species Code:	Species Name:	Feed Guild	Toler- ance	Breed Guild	IBI Group	No. Fish	Rel. No.	% by No.	Rel. Wt.	% by Wt.	Av. Wt.
40-016	White Sucker	0	Т	S	W	28	56.0	22.95	14020	37.10	250.3
43-001	Common Carp	0	Т	Μ	G	1	2.0	0.82	3000	7.94	1500.0
43-004	Hornyhead Chub	I	I	Ν	Ν	3	6.0	2.46	130	0.34	21.6
43-022	Rosyface Shiner	I	I	S	Ν	19	38.0	15.57	30	0.08	0.7
43-032	Spotfin Shiner	I		Μ	Ν	3	6.0	2.46	20	0.05	3.3
43-034	Sand Shiner	I	М	Μ	Ν	1	2.0	0.82	6	0.02	3.0
43-043	Bluntnose Minnow	0	Т	С	Ν	2	4.0	1.64	10	0.03	2.5
47-002	Channel Catfish			С	F	5	10.0	4.10	11700	30.96	1170.0
47-004	Yellow Bullhead	I	Т	С		1	2.0	0.82	100	0.26	50.0
77-003	Rock Bass	С		С	S	1	2.0	0.82	640	1.69	320.0
77-004	Smallmouth Bass	С	М	С	F	4	8.0	3.28	120	0.32	15.0
77-006	Largemouth Bass	С		С	F	2	4.0	1.64	2800	7.41	700.0
77-008	Green Sunfish	I	Т	С	S	8	16.0	6.56	90	0.24	5.6
77-009	Bluegill Sunfish	I	Р	С	S	19	38.0	15.57	980	2.59	25.7
77-015	Green X Bluegill Sunfish					2	4.0	1.64	350	0.93	87.5
80-001	Sauger	Р		S	F	3	6.0	2.46	3440	9.10	573.3
80-011	Logperch	I	М	S	D	1	2.0	0.82	10	0.03	5.0
87-001	Round Goby				Е	19	38.0	15.57	340	0.90	8.9

IBI: 30.0

Mlwb: 7.8

	Appendix	Tab			dwest becies		ersity	Institu	ute		
Site ID	D: 16-1 River: 95-656	D	esPlaines	s River			RM:	71.70	Date:	09/30/20)22
Time I	Fished: 2461 Distan	ce:	0.500	Dr	ainge (so	ımi):	358.7	Dep	oth:	0	
Locati	on: ust. E. Palatine Rd.					L	at: 42	.11399	Long:	-87.8892	23
Species Code:	Species Name:	Feed Guild	Toler- ance	Breed Guild	IBI Group	No. Fish	Rel. No.	% by No.	Rel. Wt.	% by Wt.	Av. Wt.
37-003	Northern Pike	Р		М	F	1	2.0	0.33	2300	2.52	1150.0
40-016	White Sucker	0	Т	S	W	52	104.0	17.39	26860	29.42	258.2
40-018	Spotted Sucker	Ι		S	R	1	2.0	0.33	1300	1.42	650.0
43-001	Common Carp	0	Т	М	G	18	36.0	6.02	31400	34.40	872.2
43-002	Goldfish	0	Т	М	G	1	2.0	0.33	330	0.36	165.0
43-003	Golden Shiner	Ι	Т	М	Ν	4	8.0	1.34	140	0.15	17.5
43-004	Hornyhead Chub	Ι	Ι	Ν	Ν	10	20.0	3.34	740	0.81	37.0
43-032	Spotfin Shiner	Ι		М	Ν	2	4.0	0.67	10	0.01	2.5
43-034	Sand Shiner	Ι	М	М	Ν	2	4.0	0.67	6	0.01	1.5
43-043	Bluntnose Minnow	0	Т	С	Ν	21	42.0	7.02	80	0.09	1.9
47-002	Channel Catfish			С	F	3	6.0	1.00	9350	10.24	1558.3
47-004	Yellow Bullhead	Ι	Т	С		7	14.0	2.34	2380	2.61	170.0
47-008	Stonecat Madtom	Ι	Ι	С		2	4.0	0.67	80	0.09	20.0
54-002	Blackstripe Topminnow	Ι		М		4	8.0	1.34	20	0.02	2.5
77-002	Black Crappie	Ι		С	S	1	2.0	0.33	4	0.00	2.0
77-003	Rock Bass	С		С	S	20	40.0	6.69	1360	1.49	34.0
77-004	Smallmouth Bass	С	М	С	F	24	48.0	8.03	4240	4.64	88.3
77-006	Largemouth Bass	С		С	F	17	34.0	5.69	3470	3.80	102.0
77-008	Green Sunfish	Ι	Т	С	S	24	48.0	8.03	550	0.60	11.4
77-009	Bluegill Sunfish	Ι	Р	С	S	47	94.0	15.72	3460	3.79	36.8
77-014	Bluegill X Pumpkinseed Sunfish					1	2.0	0.33	70	0.08	35.0
77-015	Green X Bluegill Sunfish					3	6.0	1.00	380	0.42	63.3
80-001	Sauger	Р		S	F	2	4.0	0.67	2400	2.63	600.0
80-011	Logperch	Ι	М	S	D	10	20.0	3.34	160	0.18	8.0
80-014	Johnny Darter	Т		С	D	2	4.0	0.67	2	0.00	0.5
87-001	Round Goby				Е	20	40.0	6.69	200	0.22	5.0
No Spec IBI:	cies: 24 Nat. Species: 32.0 Mlwb: 8.4	21	Hybrids	: 2		Total Co	unted:	299 T	otal Rel. V	Vt. :	91292

				•	pecies L	.150					
Site II	D: 11-2 River: 95-995	Μ	ill Creek				RM:	1.71	Date:	06/27/20	022
Time	Fished: 1310 Distar	ice:	0.200	Dr	ainge (sq r	ni):	62.2	Dep	oth:	0	
Locati	ion: ust. Mill Creek WWTP					L	at: 42	.42115	Long:	-87.9567	78
Species Code:	Species Name:	Feed Guild	Toler- ance	Breed Guild	IBI Group	No. Fish	Rel. No.	% by No.	Rel. Wt.	% by Wt.	Av. Wt.
15-001	Bowfin	Р		С		2	3.0	0.51	4350	17.75	1450.0
37-003	Northern Pike	Р		Μ	F	1	1.5	0.25	1200	4.90	800.0
40-016	White Sucker	0	Т	S	W	20	30.0	5.05	3495	14.26	116.
43-001	Common Carp	0	Т	Μ	G	2	3.0	0.51	5250	21.42	1750.
13-003	Golden Shiner	Ι	Т	М	Ν	5	7.5	1.26	135	0.55	18.0
13-004	Hornyhead Chub	Ι	I	Ν	Ν	14	21.0	3.54	315	1.29	15.0
13-022	Rosyface Shiner	Ι	I	S	Ν	4	6.0	1.01	9	0.04	1.5
13-032	Spotfin Shiner	Ι		М	Ν	61	91.5	15.40	315	1.29	3.4
13-043	Bluntnose Minnow	0	Т	С	Ν	73	109.5	18.43	330	1.35	3.0
7-002	Channel Catfish			С	F	11	16.5	2.78	4800	19.59	290.9
17-004	Yellow Bullhead	Ι	Т	С		37	55.5	9.34	1005	4.10	18.
17-008	Stonecat Madtom	Ι	I	С		2	3.0	0.51	75	0.31	25.0
54-002	Blackstripe Topminnow	I		М		6	9.0	1.52	9	0.04	1.(
7-002	Black Crappie	Ι		С	S	1	1.5	0.25	45	0.18	30.0
7-006	Largemouth Bass	С		С	F	6	9.0	1.52	975	3.98	108.3
7-007	Warmouth Sunfish	С		С	S	1	1.5	0.25	90	0.37	60.0
7-008	Green Sunfish	Ι	Т	С	S	8	12.0	2.02	90	0.37	7.5
7-009	Bluegill Sunfish	I	Р	С	S	65	97.5	16.41	1035	4.22	10.6
7-010	Orangespotted Sunfish	Ι		С	S	29	43.5	7.32	195	0.80	4.4
7-013	Pumpkinseed Sunfish	I	Р	С	S	39	58.5	9.85	660	2.69	11.:
7-014	Bluegill X Pumpkinseed Sunfish					1	1.5	0.25	30	0.12	20.0
30-002	Walleye	Р		S	F	1	1.5	0.25	67	0.28	45.0
30-005	Blackside Darter	I		S	D	6	9.0	1.52	30	0.12	3.3
80-014	Johnny Darter	Ι		С	D	1	1.5	0.25	1	0.01	1.0

IBI: 38.0

8.9

MIwb:

	Append	dix Tab			dwest becies		ersity	Instit	ute		
Site II	D: 10-7 River: 95-	-996 N	orth Mill	•			RM:	11.30	Date:	06/27/202	22
Time	Fished: 1152 Di	stance:	0.100	Dr	ainge (sq	mi):	19.2	Dep	oth:	0	
Locat	ion: ust. Edwards Rd.					l	_at: 42.	48087	Long:	-87.0118	4
Species Code:	Species Name:	Feed Guild	Toler- ance	Breed Guild	IBI Group	No. Fish	Rel. No.	% by No.	Rel. Wt.	% by Wt.	Av. Wt.
34-001	Central Mudminnow	I	Т	С	·	3	9.0	23.08	60	12.74	6.6
43-013	Creek Chub	G	Т	Ν	Ν	4	12.0	30.77	300	63.69	25.0
43-042	Fathead Minnow	0	Т	С	Ν	1	3.0	7.69	9	1.91	3.0
54-002	Blackstripe Topminnow	I		М		1	3.0	7.69	6	1.27	2.0
77-008	Green Sunfish	I	Т	С	S	2	6.0	15.38	90	19.11	15.0
80-014	Johnny Darter	I		С	D	2	6.0	15.38	6	1.27	1.0
No Spec IBI:	cies: 6 Nat. Specie 16.0 Mlwb:	s: 6 N/A	Hybrids	: 0		Total Co	unted:	13 1	rotal Rel. V	Vt. :	471

	Appendiz	x Tab			dwest Decies		ersity	Instit	ute		
Site II	D: 10-1 River: 95-99	96 N	orth Mill	Creek	ζ		RM:	1.10	Date:	06/27/20	22
Time I	Fished: 1233 Dista	ance:	0.150	Dr	ainge (sq	mi):	31.9	Dep	oth:	0	
Locati	ion: dst. Millburn Rd.					L	at: 42.	42346	Long:	-87.9972	.2
Species Code:	Species Name:	Feed Guild	Toler- ance	Breed Guild	IBI Group	No. Fish	Rel. No.	% by No.	Rel. Wt.	% by Wt.	Av. Wt.
40-016	White Sucker	0	Т	S	W	53	106.0	20.62	2840	44.11	26.7
43-001	Common Carp	0	Т	М	G	2	4.0	0.78	390	6.06	97.5
43-013	Creek Chub	G	Т	Ν	Ν	9	18.0	3.50	440	6.83	24.4
43-032	Spotfin Shiner	I		М	Ν	37	74.0	14.40	310	4.82	4.1
43-043	Bluntnose Minnow	0	Т	С	Ν	40	80.0	15.56	190	2.95	2.3
47-004	Yellow Bullhead	I.	Т	С		1	2.0	0.39	260	4.04	130.0
47-006	Black Bullhead	I	Р	С		1	2.0	0.39	180	2.80	90.0
54-002	Blackstripe Topminnow	I		М		4	8.0	1.56	8	0.12	1.0
77-006	Largemouth Bass	С		С	F	4	8.0	1.56	8	0.12	1.0
77-008	Green Sunfish	I	Т	С	S	24	48.0	9.34	290	4.50	6.0
77-009	Bluegill Sunfish	I	Р	С	S	70	140.0	27.24	1280	19.88	9.1
77-010	Orangespotted Sunfish	I		С	S	3	6.0	1.17	20	0.31	3.3
77-015	Green X Bluegill Sunfish					2	4.0	0.78	20	0.31	5.0
80-003	Yellow Perch			М		6	12.0	2.33	200	3.11	16.6
80-014	Johnny Darter	I		С	D	1	2.0	0.39	2	0.03	1.0
No Spec	cies: 14 Nat. Species:	13	Hybrids	: 1		Total Co	unted:	257 1	otal Rel. V	Vt. :	6438

IBI: 30.0

Mlwb: 6.9

APPENDIX B

Upper Des Plaines 2022 Macroinvertebrate Assemblage Data

B-1: Macroinvertebrate IBI (mIBI) Metrics & Scores 2022 B-2: Total Macroinvertebrate Taxa DesPlaines River Grand (all sites combined) 2022 B-3: Total Macroinvertebrate Taxa Mill/North Mill Creek Grand (all sites combined) 2022 B-4: Macroinvertebrate Taxa by Site and Sample 2022

			Drainage			Numl	per of			Perce	ent:	
River Mile	Site ID	Sample Date	Area (sq mi)	Sub- samp	Total Taxa	Coleoptera Taxa	Mayfly Taxa	Intolerant Taxa	MBI	Percent Scrapers	Percent EPT	MIBI
DesPlai	nes River (9	95-656)										
Year: 2	2022											
109.30	G-08	07/18/202	2 122.80		32(70.0)	2(40.0)	3(29.4)	2(22.2)	6.8(68.9)	3.8(12.9)	11.8(16.0)	37.1
106.60	13-5	07/18/202	2 137.29		33(72.0)	1(20.0)	3(29.4)	2(22.2)	6.6(72.1)	6.4(21.7)	17.0(23.0)	37.2
102.90	G-25	07/18/202	2 144.80		36(78.0)	1(20.0)	3(29.4)	0(0.0)	6.3(77.1)	2.2(7.6)	12.3(16.6)	32.7
99.72	13-18	07/18/202	2 212.87		25(54.0)	1(20.0)	1(9.8)	2(22.2)	7.3(60.7)	5.0(16.8)	27.2(36.7)	31.5
99.30	13-19	07/18/202	2 213.17		34(74.0)	2(40.0)	1(9.8)	4(44.4)	8.0(49.2)	1.9(6.4)	5.7(7.7)	33.1
98.70	13-3	07/19/202	2 220.29		30(65.0)	2(40.0)	3(29.4)	2(22.2)	5.7(86.9)	11.5(38.7)	9.1(12.3)	42.1
96.82	13-2	07/19/202	2 225.36		31(67.0)	2(40.0)	3(29.4)	3(33.3)	5.6(88.5)	15.2(51.3)	10.2(13.8)	46.2
94.20	G-07	07/19/202	2 237.70		34(74.0)	2(40.0)	4(39.2)	4(44.4)	5.2(95.1)	19.6(66.1)	18.9(25.6)	54.9
90.60	13-16	07/19/202	2 253.75		29(63.0)	3(60.0)	6(58.8)	5(55.6)	4.8(100)	11.5(38.9)	32.9(44.5)	60.1
87.10	16-6	07/19/202	2 261.38		39(85.0)	3(60.0)	4(39.2)	8(88.9)	4.8(100)	19.7(66.5)	34.4(46.5)	69.4
84.60	16-7	07/19/202	2 266.48		36(78.0)	3(60.0)	4(39.2)	6(66.7)	5.0(98.4)	9.9(33.5)	33.4(45.2)	60.1
83.60	16-5	07/20/202	2 268.07		34(74.0)	2(40.0)	3(29.4)	6(66.7)	5.7(86.9)	2.5(8.3)	23.5(31.8)	48.2
82.90	16-8	07/22/202	2 268.90		39(85.0)	2(40.0)	5(49.0)	6(66.7)	5.1(96.7)	4.3(14.6)	29.3(39.6)	56.0
80.00	16-4	07/20/202	2 273.21		34(74.0)	3(60.0)	6(58.8)	5(55.6)	5.0(98.4)	14.7(49.7)	47.5(64.2)	65.8
76.70	16-3	07/20/202	2 314.68		30(65.0)	4(80.0)	3(29.4)	3(33.3)	5.1(96.7)	5.5(18.6)	11.8(15.9)	48.4
75.40	R5W07648	-9 07/20/202	2 315.80		36(78.0)	2(40.0)	6(58.8)	4(44.4)	5.5(90.2)	24.6(83.0)	25.4(34.4)	61.3
71.70	16-1	07/21/202	2 358.68		33(72.0)	2(40.0)	3(29.4)	6(66.7)	5.7(86.9)	10.7(36.1)	33.8(45.7)	53.8
Mill Cree	ek (95-995)											
Year: 2	2022											
1.71	11-2	07/21/202	2 62.25		34(74.0)	2(40.0)	3(29.4)	1(11.1)	5.9(83.6)	3.6(12.3)	46.4(62.7)	44.7

Appendix Table B-1. Illinois Macroinvertebrate IBI metrics and values from Upper Des Plaines River study area during 2022.

				Drainage			Numl	ber of			Perce	nt:	
River Mile	Site ID	Sample	Date	Area (sq mi)	Sub- samp	Total Taxa	Coleoptera Taxa	Mayfly Taxa	Intolerant Taxa	MBI	Percent Scrapers	Percent EPT	MIBI
North M	ill Creek (9	95-996)											
Year: 2	2022												
11.30	10-7	(07/21/202	2 19.20		29(63.0)	1(20.0)	1(9.8)	3(33.3)	6.0(82.0)	21.9(74.0)	1.0(1.4)	40.5

Appendix Table B-1. Illinois Macroinvertebrate IBI metrics and values from Upper Des Plaines River study area during 2022.

	ndix Table B-2 . Total macroinvertbrate taxa co						Illinois	
							Funct.	
Таха		Collection			Ohio EPA	Illinois	Feeding	Таха
Code	Taxa Name	Frequency	Percent	Abundance	Tolerance	Tolerance	Group	Group
03600	Oligochaeta	17	8.50	427	Т	10	CG	
16700	Tricorythodes sp	11	7.48	376	MI	5	CG	MA
06800	Gammarus sp	10	6.97	350	F	3		
22001	Coenagrionidae	15	5.79	291	Т	5.5	PR	
85625	Rheotanytarsus sp	12	4.04	203	F	6	CF	
84470	Polypedilum (P.) illinoense	16	3.76	189	Т	6	SH	
53800	Hydroptila sp	13	3.60	181	F	2	SC	CA
06810	Gammarus fasciatus	6	3.44	173	F	3	CG	
06201	Hyalella azteca	12	3.32	167	F	4	CG	
83300	Glyptotendipes (G.) sp	6	3.24	163	MT	10	CF	
52200	Cheumatopsyche sp	12	2.89	145	F	6	CF	CA
11130	Baetis intercalaris	10	2.79	140	F	4	CG	MA
69400	Stenelmis sp	14	2.69	135	F	7	SC	СО
17200	Caenis sp	7	2.43	122	F	6	CG	MA
85265	Cladotanytarsus vanderwulpi group sp 5	9	2.37	119	MI	7	CG	
68700	Dubiraphia sp	14	2.17	109	F	5	CG	CO
83158	Endochironomus nigricans	8	2.13	107	MT	6	SH	
01801	Turbellaria	16	1.99	100	F	6	PR	
93200	Hydrobiidae	11	1.59	80	F	6	SC	
84450	Polypedilum (Uresipedilum) flavum	13	1.49	75	F	6	SH	
68708	Dubiraphia vittata group	5	1.39	70	F	5	CG	CO
83040	Dicrotendipes neomodestus	14	1.33	67	F	6	CG	
84540	Polypedilum (Tripodura) scalaenum group	9	1.33	67	F	6	SH	
78655	Procladius (Holotanypus) sp	13	1.31	66	MT	8	PR	
85800	Tanytarsus sp	15	1.31	66	F	7	CF	
98001	Pisidiidae	10	1.19	60		5		
95100	Physella sp	9	1.05	53	Т	9	SC	
85500	Paratanytarsus sp	12	0.96	48	F	6	CG	
78600	Pentaneura inconspicua	10	0.84	42	F	3	PR	
85821	Tanytarsus glabrescens group sp 7	7	0.80	40	F	7	CF	
53501	Hydroptilidae	4	0.74	37	F	3.5	PH	CA
77750	Hayesomyia senata or Thienemannimyia norena	11	0.74	37	F	5		
	Polypedilum (Tripodura) halterale group	9	0.64	32	MT	6	SH	
	Callibaetis sp	4	0.56	28	MT	4	CG	MA
06501	Gammaridae	4	0.52	26		4	CG	
78680	Procladius (Psilotanypus) bellus	3	0.52	26	MT	8	PR	
	Cricotopus (C.) bicinctus	8	0.52	26	Т	8	SH	
	Corbicula fluminea	9	0.52	26	F	4	CF	
98200	Pisidium sp	6	0.50	25	MT	5	CF	
	Baetis flavistriga	4	0.48	24	F	4	CG	MA
82820	Cryptochironomus sp	9	0.44	22	F	8	PR	
	Cladopelma sp	3	0.42	21	Т	6	CG	
	Stenacron sp	6	0.36	18	F	4	SC	MA
	Paracloeodes minutus	4	0.34	17	MI	5		MA
	Tanypus sp	2	0.32	16	Т	8	PR	
	Caecidotea sp	6	0.30	15	Т	6	CG	
	Cryptotendipes sp	5	0.30	15	F	6	CG	
	Baetidae	7	0.28	14		4	CG	MA
	Macronychus glabratus	6	0.28	14	F	2		CO
	Microtendipes "caelum" (sensu Simpson & Bode, 198		0.28	14	MI	6	CF	

Taxa Code	Taxa Name	Collection Frequency	Percent	Abundance	Ohio EPA Tolerance	Illinois Tolerance	Illinois Funct. Feeding Group	Taxa Group
77130	Ablabesmyia rhamphe group	5	0.26	13	MT	6	CG	
	Ablabesmyia peleensis	5	0.26	13		6		
	Cryptotendipes sp 2	1	0.26	13	MT	6	CG	
	Elimia sp	2	0.26	13	MI	6	SC	
	Cricotopus (Isocladius) sylvestris group	6	0.24	12	Т	8	SH	
	Sphaerium sp	6	0.24	12	F	5	CG	
	Helicopsyche borealis	4	0.22	11	MI	2	SC	CA
	Oecetis sp	8	0.22	11	F	5	PR	CA
82822	Cryptochironomus eminentia	5	0.20	10	F	0		
	Microchironomus sp	3	0.20	10	MT	6	CG	
59550	Oecetis inconspicua complex sp A (sensu Floyd, 1995)	5	0.18	9	F	5	PR	CA
	Clinotanypus pinguis	3	0.18	9	MT	6	PR	
82885	Cryptotendipes pseudotener	5	0.18	9	F	6	CG	
	Hydropsyche simulans	3	0.16	8	MI	5	CF	CA
77120	Ablabesmyia mallochi	6	0.16	8	F	6	CG	
85230	Cladotanytarsus mancus group	4	0.16	8	F	7	CG	
	Dicrotendipes simpsoni	2	0.14	7	Т	6	CG	
84700	Stenochironomus sp	5	0.14	7	F	3	SH	
	Orthocladiinae	5	0.12	6		6	CG	
83000	Dicrotendipes sp	4	0.12	6	F	6	CG	
85840	Tanytarsus sepp	4	0.12	6	F	7	CF	
	Planorbidae	4	0.12	6	MT	6.5	SC	
	Heptageniidae	4	0.10	5		3.5	SC	MA
	Maccaffertium mexicanum integrum	1	0.10	5	MI	0		
	Maccaffertium terminatum	4	0.10	5	MI	4	SC	MA
	Chironomus (C.) sp	3	0.10	5	MT	11	CG	
	Harnischia sp	2	0.10	5	F	6	CG	
	Tribelos jucundum	5	0.10	5	MT	5	CG	
	Orconectes (Procericambarus) rusticus	2	0.08	4	F	5	CG	
	Nectopsyche candida	3	0.08	4	MI	3	SH	CA
	Labrundinia neopilosella	2	0.08	4		4	PR	
	Argia sp	2	0.06	3	F	5	PR	
28500	Libellula sp	2	0.06	3	MT	8	PR	
	Oecetis persimilis	1	0.06	3	MI	5	PR	CA
	Ancyronyx variegata	2	0.06	3	F	2	CG	CO
	Dicrotendipes lucifer	2	0.06	3	MT	6	CG	
	Phaenopsectra obediens group	1	0.06	3	F	4	SC	
	Phaenopsectra flavipes	3	0.06	3	MT	4	SC	
	Saetheria tylus	3	0.06	3	F	4		
	Helobdella sp	2	0.04	2	MT	8	PA	
	Helobdella stagnalis	2	0.04	2	Т	8	PR	
	Ephemerellidae	2	0.04	2	MI	3.5	CG	
	Hexagenia sp	2	0.04	2	F	6	CG	MA
	Aeshna sp	2	0.04	2	MT	4	PR	
	Corduliidae	2	0.04	2		4.5	PR	
	Oecetis nocturna	1	0.04	2	F	5	PR	CA
	Simulium sp	2	0.04	2	F	6	CF	
	Tanypodinae	2	0.04	2		6	PR	
	Coelotanypus sp	2	0.04	2	т	4	PR	
	Rheocricotopus (Psilocricotopus) robacki	2	0.04	2	F	6	CG	

Taxa Code								-
	Taxa Name	Collection	Parcent	Abundance	Ohio EPA	Illinois	Illinois Funct. Feeding Group	Taxa Group
	Thienemanniella xena	2	0.04	2	F	2	CG	Group
	Parachironomus sp	1	0.04	2	MT	8	PR	
	Paralauterborniella nigrohalteralis	2	0.04	2	F	6	CG	
	Paratendipes albimanus or P. duplicatus	2	0.04	2	F	3	CG	
	Paratendipes subaequalis	1	0.04	2	F	0		
	Tanytarsini	1	0.04	2		6	CF	
	Zavrelia aristata	2	0.04	2	MI	0	Ci	
	Ancylidae	2	0.04	2	F	7	SC	
	Glossiphoniidae	1	0.02	1	MT	8	PR	
	Erpobdella microstoma	1	0.02	1	MT	8	PR	
	Crangonyx sp	1	0.02	1	MT	4	CG	
	Orconectes sp	1	0.02	1	F	5	CG	
	Paracloeodes sp	1	0.02	1	MI	4	SC	MA
	Procloeon viridoculare	1	0.02	1	MI	4	50	MA
	Calopterygidae	1	0.02	1	F	3.5	PR	N/A
	Sialis sp	1	0.02	1	MT	4	PR	
	Chauliodes sp	1	0.02	1	MT	4	PR	
	Nectopsyche sp	1	0.02	1	MI	3	SH	СА
	Nectopsyche sp Nectopsyche exquisita	1	0.02	1	MI	3	511	CA
	Tipula abdominalis	1	0.02	1	F	0		0,1
	Culicidae	1	0.02	1	MT	8	CG	
	Anopheles sp	1	0.02	1	F	6	CF	
	Larsia sp	1	0.02	1	MT	6	PR	
	Tanypus neopunctipennis	1	0.02	1	Т	8	PR	
	Tanypus stellatus	1	0.02	1	MT	8		
	Cricotopus sp	1	0.02	1	F	8	SH	
	Nanocladius sp	1	0.02	1	F	3	CG	
	Nanocladius (N.) crassicornus or N. (N.) "rectinervis"	1	0.02	1	F	3	CG	
	Thienemanniella sp	1	0.02	1		2	CG	
	Thienemanniella lobapodema	1	0.02	1	F	2	CG	
	Polypedilum sp	1	0.02	1		6	SH	
	Stictochironomus sp	1	0.02	1	F	5		
	Cladotanytarsus species group A	1	0.02	1	F	7	CG	
	Cladotanytarsus vanderwulpi	1	0.02	1	MI	7	CG	
	Tanytarsus glabrescens group	1	0.02	1	F	7		
	Stratiomyidae	1	0.02	1		10	CG	
	Ephydridae	1	0.02	1	F	8	CG	
	Fossaria sp	1	0.02	1	MT	7	SC	

	Ohio EPA	Illinois	Feeding	Таха			Collection
Taxa Name	Tolerance	Tolerance	Group	Group	Numbers	Percent	Frequency
Cheumatopsyche sp	F	6	CF	CA	131	13.52	2
Gammarus sp	F	3	N		63	6.50	1
Caecidotea sp	Т	6	CG		58	5.99	3
Oligochaeta	Т	10	CG		57	5.88	3
Hydropsyche sp	F	5	CF	CA	51	5.26	1
Polypedilum (Uresipedilum) flavum	F	6	SH		46	4.75	2
Physella sp	Т	9	SC		46	4.75	3
Sphaerium sp	F	5	CG		46	4.75	2
Dubiraphia sp	F	5	CG	со	39	4.02	3
Coenagrionidae	T	5.5	PR		32	3.30	3
Pisidium sp	MT	5	CF		31	3.20	1
Turbellaria	F	6	PR		24	2.48	3
Stenelmis sp	F	7	SC	СО	24	2.48	2
Hydrobiidae	F	6	SC		19	1.96	2
	F	4	CG	N/1 A	19	1.96	
Baetis flavistriga			CG	MA			1
Macronychus glabratus	F	2		CO	14	1.44	1
Hayesomyia senata or Thienemannimyia norene	F	5			14	1.44	3
Dicrotendipes neomodestus	F	6	CG	-	14	1.44	1
Hyalella azteca	F	4	CG		13	1.34	2
Baetis intercalaris	F	4	CG	MA	11	1.14	2
Polypedilum (P.) illinoense	Т	6	SH		11	1.14	3
Stenacron sp	F	4	SC	MA	10	1.03	1
Tricorythodes sp	MI	5	CG	MA	9	0.93	1
Dubiraphia vittata group	F	5	CG	CO	9	0.93	1
Microtendipes "caelum" (sensu Simpson & Bode	MI	6	CF		9	0.93	1
Paratanytarsus sp	F	6	CG		9	0.93	2
Lirceus sp	MT	4	CG		8	0.83	1
Cryptotendipes pseudotener	F	6	CG		8	0.83	2
Helobdella stagnalis	Т	8	PR		7	0.72	1
Gammarus fasciatus	F	3	CG		7	0.72	1
Procladius (Holotanypus) sp	MT	8	PR		7	0.72	2
Rheotanytarsus sp	F	6	CF		7	0.72	2
Tanytarsus sp	F	7	CF		7	0.72	2
Clinotanypus pinguis	MT	6	PR		6	0.62	1
Heptageniidae		3.5	SC	MA	5	0.52	2
Caenis sp	F	6	CG	MA	5	0.52	2
Hydropsychidae		5.5	CF	CA	5	0.52	1
Oecetis sp	F	5	PR	CA	5	0.52	2
Polypedilum (Tripodura) scalaenum group	F	6	SH		5	0.52	2
Pisidiidae		5			5	0.52	1
Hydropsyche depravata group	F	5	CF	CA	4	0.41	2
Hydroptila sp	F	2	SC	CA	4	0.41	1
Conchapelopia sp	F	6	PR		4	0.41	2
Glyptotendipes (G.) sp	MT	10	CF		4	0.41	1
Paralauterborniella nigrohalteralis	F	6	CG		4	0.41	1
-	г Т	7					
Stagnicola sp			SC	<u> </u>	4	0.41	1
Ceratopsyche morosa group Chironomus (C.) decorus group	MI T	4 11		CA	3	0.31 0.31	1
		1 11	1	1	3	0.31	1

	Ohio EPA	Illinois	Feeding	Таха			Collection
Taxa Name	Tolerance	Tolerance	Group	Group	Numbers	Percent	Frequency
Stenochironomus sp	F	3	SH		3	0.31	1
Gyraulus sp	MT	6	SC		3	0.31	1
Baetidae		4	CG	MA	2	0.21	1
Hydroptilidae	F	3.5	PH	CA	2	0.21	1
Ablabesmyia mallochi	F	6	CG		2	0.21	2
Ablabesmyia rhamphe group	MT	6	CG		2	0.21	2
Chironomini		6	CG		2	0.21	1
Phaenopsectra obediens group	F	4	SC		2	0.21	1
Cladotanytarsus mancus group	F	7	CG		2	0.21	1
Tanytarsus glabrescens group sp 7	F	7	CF		2	0.21	1
Orconectes sp	F	5	CG		1	0.10	1
Aeshnidae		4.5	PR		1	0.10	1
Libellula sp	MT	8	PR		1	0.10	1
Chauliodes rastricornis	Т	4	PR		1	0.10	1
Simulium sp	F	6	CF		1	0.10	1
Ceratopogonidae	Т	5	PR		1	0.10	1
Ablabesmyia peleensis		6			1	0.10	1
Nilotanypus fimbriatus	F	6	PR		1	0.10	1
Pentaneura inconspicua	F	3	PR		1	0.10	1
Cricotopus (C.) bicinctus	Т	8	SH		1	0.10	1
Nanocladius (N.) crassicornus or N. (N.) "rectine	F	3	CG		1	0.10	1
Nanocladius (N.) distinctus	MT	3	CG		1	0.10	1
Parametriocnemus sp	F	4	CG		1	0.10	1
Thienemanniella xena	F	2	CG		1	0.10	1
Cladopelma sp	Т	6	CG		1	0.10	1
Cryptotendipes sp	F	6	CG		1	0.10	1
Endochironomus nigricans	MT	6	SH		1	0.10	1
Parachironomus frequens	F	8	PR		1	0.10	1
Paratendipes albimanus or P. duplicatus	F	3	CG		1	0.10	1
Cladotanytarsus vanderwulpi group sp 5	MI	7	CG		1	0.10	1
Tanytarsus sepp	F	7	CF		1	0.10	1
Hemerodromia sp	F	6	PR		1	0.10	1
Planorbella (Pierosoma) pilsbryi	Т	6.5	SC		1	0.10	1

Dst. Russell Rd.									
					Subsample:			RM:	109.3
tion Date:07/18/2022 River (Code9	5-656	River:	DesPlaines River					
	Таха			Таха			Feed		
Таха	Grp	Tol.	Quant	Code	Таха		Grp	Tol.	Quant
Turbellaria		6.0	10						
Oligochaeta		10.0	102						
Helobdella stagnalis		8.0	1						
Hyalella azteca		4.0	52						
Gammaridae		4.0	3						
Gammarus sp		3.0	6						
Callibaetis sp	MA	4.0	10						
Ephemerellidae		3.5	1						
Caenis sp	MA	6.0	10						
Hexagenia sp	MA	6.0	1						
Coenagrionidae		5.5	16						
Argia sp		5.0	2						
Hydroptilidae	CA	3.5	10						
Oecetis persimilis	CA	5.0	3						
Dubiraphia sp	СО	5.0	4						
Stenelmis sp	СО	7.0	2						
Ablabesmyia peleensis		6.0	2						
Larsia sp		6.0	1						
Pentaneura inconspicua		3.0	1						
Procladius (Holotanypus) sp		8.0	6						
Tanypus sp		8.0	1						
Cricotopus (Isocladius) sylvestris grou	р	8.0	1						
Cryptotendipes sp 2		6.0	13						
Dicrotendipes neomodestus		6.0	2						
Endochironomus nigricans		6.0	5						
Polypedilum (P.) illinoense		6.0	1						
	ıp	6.0	3						
		6.0	2						
			1						
			5						
			1						
Elimia sp		6.0	8						
•			1						
Sphaerium sp		5.0	1						
	Digochaeta Helobdella stagnalis Hyalella azteca Gammaridae Gammarus sp Callibaetis sp Ephemerellidae Caenis sp Hexagenia sp Coenagrionidae Argia sp Hydroptilidae Decetis persimilis Dubiraphia sp Stenelmis sp Ablabesmyia peleensis Larsia sp Pentaneura inconspicua Procladius (Holotanypus) sp Fanypus sp Cricotopus (Isocladius) sylvestris grou Cryptotendipes sp 2 Dicrotendipes neomodestus Endochironomus nigricans Polypedilum (P.) illinoense Polypedilum (Tripodura) halterale grou Fanytarsini Paratanytarsus sp Fanytarsus sp Fanytarsus sp Cavrelia aristata	TaxaGrpFurbellariaCirpotellariaDigochaetaCirpotella stagnalisHyalella aztecaCirpotella stagnalisGammaridaeCirpotella stagnalisGammaridaeMAGammaris spMAEphemerellidaeMACaenis spMAHexagenia spMACoenagrionidaeCAOcenagrionidaeCAOcectis persimilisCAOcectis persimilisCOOubiraphia spCOStenelmis spCOAblabesmyia peleensisCOCorocladius (Holotanypus) spCOCircotopus (Isocladius) sylvestris groupCryptotendipes sp 2Ocircotendipes neomodestusCirootopus (Isocladius) sylvestris groupCirpotendipes sp 2Circotendipes neomodestusPolypedilum (P.) illinoenseColypedilum (P.) illinoensePolypedilum (Tripodura) halterale groupCiranytarsus spCanytarsiniCirpotendipes sp 2Canytarsus spCirpotenia aristataCanytarsus spC	Taxa Grp Tol. Furbellaria 6.0 Digochaeta 10.0 Helobdella stagnalis 8.0 Hyalella azteca 4.0 Gammaridae 4.0 Gammaridae 4.0 Gammaridae 4.0 Gammarus sp 3.0 Callibaetis sp MA Caenis sp MA Hexagenia sp MA Coenagrionidae 5.5 Argia sp CO Hydroptilidae CA Decetis persimilis CA Decetis persimilis sp CO Cubiraphia sp CO Cubiraphia sp CO Pentaneura inconspicua 3.0 Procladius (Holotanypus) sp 8.0 Cricotopus (Isocladius) sylvestris group 6.0 Polypedilum (P.) illinoense 6.0 Polypedilum (P.) illinoense 6.0 Polypedilum (Tripodura) halterale group 6.0 Paratanytarsus sp 7.0 Paratanytarsus sp 7.0	Taxa Grp Tol. Quant Furbellaria 6.0 100 Dilgochaeta 10.0 102 Helobdella stagnalis 8.0 1 Hyalella azteca 4.0 52 Gammaridae 4.0 3 Gammaridae 4.0 10 Ephemerellidae 3.5 1 Caenis sp MA 6.0 10 Hexagenia sp MA 6.0 10 Coenagrionidae 5.5 16 16 Argia sp CA 3.5 10 Decetis persimilis CA 3.5 10 Decetis persimilis CA 5.0 4 Stenelmis sp CO 7.0 2 Ablabesmyia peleensis 6.0 1 1 Perotadius (Holotanypus) sp 8.0 1 1 Criptotendipes sp 2 6.0 13 1 Croptopus (Isocladius) sylvestris group 8.0 1 1 Croptotendipe	Taxa Grp Tol. Quant Code Lurbellaria 6.0 10 102 Dilgochaeta 10.0 102 Helobdella stagnalis 8.0 1 Hyalella azteca 4.0 52 Sammaridae 4.0 3 Gammaridae 4.0 10 Sammaridae 3.0 6 Callibaetis sp MA 4.0 10 Ephemerellidae 3.5 1 Caenis sp MA 6.0 10 Hexagenia sp MA 6.0 10 Coenagrionidae 5.5 16 Argia sp CO 7.0 22 Hydroptilidae CA 3.5 10 Decetis persimilis 6.0 1 1 Pentaneura inconspicua 3.0 1 1 Pentaneura inconspicua 3.0 1 1 Proteadius (Holotanypus) sp 8.0 1 1 Cotopus (Isocladius) sylvestris group </td <td>Taxa Grp Tol. Quant Code Taxa Turbellaria 6.0 10 102 100 102 telobdella stagnalis 8.0 1 100 102 100 102 telobdella stagnalis 8.0 1 100 52 100</td> <td>Taxa Grp Tol. Quant Code Taxa Turbellaria 6.0 10 102</td> <td>Taxa Grp Tol. Quant Code Taxa Grp Turbellaria 6.0 10 102</td> <td>Taxa Grp Tol. Quant Code Taxa Grp Tol. Furbellaria 6.0 100 102</td>	Taxa Grp Tol. Quant Code Taxa Turbellaria 6.0 10 102 100 102 telobdella stagnalis 8.0 1 100 102 100 102 telobdella stagnalis 8.0 1 100 52 100	Taxa Grp Tol. Quant Code Taxa Turbellaria 6.0 10 102	Taxa Grp Tol. Quant Code Taxa Grp Turbellaria 6.0 10 102	Taxa Grp Tol. Quant Code Taxa Grp Tol. Furbellaria 6.0 100 102

Citer						Sit	e ID:	13-5	
Site:	dst. IL-173					Sub	sample:	RM	106.60
Collee	ction Date 07/18/2022 River C	ode9	5-656	River:	DesPlaines River				
Taxa Code	Таха	Taxa Grp	Tol.	Quant	Taxa Code	Таха		Feed Grp Tol.	Quant
01801	Turbellaria		6.0	3 –					
03600	Oligochaeta		10.0	45	No. Quantitative	Taxa:	38	Total Taxa	38
06501	Gammaridae		4.0	1	Number of Orga	nisms:	265	mIBI:	37.20
06800	Gammarus sp		3.0	1					
11200	Callibaetis sp	MA	4.0	15					
17200	Caenis sp	MA	6.0	12					
18700	Hexagenia sp	MA	6.0	1					
22001	Coenagrionidae		5.5	29					
23600	Aeshna sp		4.0	1					
53800	Hydroptila sp	CA	2.0	15					
59570	Oecetis nocturna	CA	5.0	2					
68700	Dubiraphia sp	СО	5.0	3					
72700	Anopheles sp		6.0	1					
77120	Ablabesmyia mallochi		6.0	2					
77140	Ablabesmyia peleensis		6.0	8					
77355	Clinotanypus pinguis		6.0	1					
77470	Coelotanypus sp		4.0	1					
78130	Labrundinia neopilosella		4.0	1					
78655	Procladius (Holotanypus) sp		8.0	12					
78680	Procladius (Psilotanypus) bellus		8.0	16					
79000	Tanypus sp		8.0	15					
79040	Tanypus stellatus		8.0	1					
80510	Cricotopus (Isocladius) sylvestris group		8.0	2					
82800	Cladopelma sp		6.0	7					
82820	Cryptochironomus sp		8.0	2					
82880	Cryptotendipes sp		6.0	6					
83000	Dicrotendipes sp		6.0	2					
83158	Endochironomus nigricans		6.0	27					
83300	Glyptotendipes (G.) sp		10.0	5					
83700	Microchironomus sp		6.0	6					
84230	Paratendipes subaequalis		0.0	2					
84450	Polypedilum (Uresipedilum) flavum		6.0	1					
84470	Polypedilum (P.) illinoense		6.0	4					
84520	Polypedilum (Tripodura) halterale group		6.0	1					
84750	Stictochironomus sp		5.0	1					
85500	Paratanytarsus sp		6.0	8					
85800	Tanytarsus sp		7.0	3					
95100	Physella sp		9.0	2					

Siter	dat Wadawarth Dd					Sit	e ID:	13-4		
Site:	dst. Wadsworth Rd.					Sub	sample:		RM:	102.90
Collec	ction Date:07/18/2022	River Code9	5-656	River	: DesPlaines River					
Taxa Code	Таха	Taxa Grp	Tol.	Quant	Taxa Code	Таха		Feed Grp	l Tol.	Quant
01801	Turbellaria		6.0	2 -						
03600	Oligochaeta		10.0	43	No. Quantitative	Taxa:	38	Total	Taxa:	38
04601	Glossiphoniidae		8.0	1	Number of Orga	nisms:	268	mIBI:		32.67
05800	Caecidotea sp		6.0	4						
06201	Hyalella azteca		4.0	45						
11001	Baetidae	MA	4.0	3						
12501	Heptageniidae	MA	3.5	1						
15501	Ephemerellidae		3.5	1						
17200	Caenis sp	MA	6.0	20						
22001	Coenagrionidae		5.5	28						
23600	Aeshna sp		4.0	1						
27001	Corduliidae		4.5	1						
47600	Sialis sp		4.0	1						
48200	Chauliodes sp		4.0	1						
53501	Hydroptilidae	CA	3.5	8						
59500	Oecetis sp	CA	5.0	1						
68700	Dubiraphia sp	CO	5.0	1						
72501	Culicidae		8.0	1						
77130	Ablabesmyia rhamphe group		6.0	6						
77355	Clinotanypus pinguis		6.0	7						
77470	Coelotanypus sp		4.0	1						
78130	Labrundinia neopilosella		4.0	3						
78680	Procladius (Psilotanypus) bellu	ıs	8.0	9						
82800	Cladopelma sp		6.0	9						
82820	Cryptochironomus sp		8.0	3						
82880	Cryptotendipes sp		6.0	3						
83040	Dicrotendipes neomodestus		6.0	1						
83051	Dicrotendipes simpsoni		6.0	1						
83158	Endochironomus nigricans		6.0	32						
83300	Glyptotendipes (G.) sp		10.0	2						
83700	Microchironomus sp		6.0	3						
84000	Parachironomus sp		8.0	2						
	Tribelos jucundum		5.0	1						
	Tanytarsus sp		7.0	13						
85921	Zavrelia aristata		0.0	1						
95100	Physella sp		9.0	3						
95501	Planorbidae		6.5	2						
	Pisidium sp		5.0	3						

0:4-1						Site ID: 1	3-18		
Site:	dst. WR1 Riffle					Subsample:		RM:	99.72
Collec	ction Date:07/18/2022 River	Code9	5-656	River:	DesPlaines River				
Taxa Code	Таха	Taxa Grp	Tol.	Quant	Taxa Code	Таха	Feed Grp	Tol.	Quant
01801	Turbellaria		6.0	6					
03600	Oligochaeta		10.0	51					
05800	Caecidotea sp		6.0	2					
06201	Hyalella azteca		4.0	13					
06700	Crangonyx sp		4.0	1					
06810	Gammarus fasciatus		3.0	2					
17200	Caenis sp	MA	6.0	67					
22001	Coenagrionidae		5.5	11					
53800	Hydroptila sp	CA	2.0	14					
59500	Oecetis sp	CA	5.0	1					
68700	Dubiraphia sp	CO	5.0	2					
68708	Dubiraphia vittata group	СО	5.0	1					
77130	Ablabesmyia rhamphe group		6.0	2					
77140	Ablabesmyia peleensis		6.0	1					
78655	Procladius (Holotanypus) sp		8.0	1					
80001	Orthocladiinae		6.0	1					
80510	Cricotopus (Isocladius) sylvestris grou	р	8.0	1					
82820	Cryptochironomus sp		8.0	1					
82880	Cryptotendipes sp		6.0	2					
83158	Endochironomus nigricans		6.0	29					
83300	Glyptotendipes (G.) sp		10.0	72					
84155	Paralauterborniella nigrohalteralis		6.0	1					
84315	Phaenopsectra flavipes		4.0	1					
84470	Polypedilum (P.) illinoense		6.0	7					
84520	Polypedilum (Tripodura) halterale grou	qu	6.0	4					
84540	Polypedilum (Tripodura) scalaenum group		6.0	3					
85500	Paratanytarsus sp		6.0	3					
85800	Tanytarsus sp		7.0	1					
98200	Pisidium sp		5.0	1					
		Total T nIBI:	axa:	29 31.45					

Site	ust. WR1 Riffle						Sit	e ID:	13-19		
Sile.							Sub	sample:		RM:	99.30
Colle	ction Date 07/18/2022 River 0	Code9	5-656	River:	DesPl	aines River					
Taxa Code	Таха	Taxa Grp	Tol.	Quant	Taxa Code		Таха		Feed Grp	Tol.	Quant
01801	Turbellaria		6.0	10	98001	Pisidiidae				5.0	1
03600	Oligochaeta		10.0	58 –							
05800	Caecidotea sp		6.0	5	No. C	Quantitative	e Taxa:	40	Total	Taxa:	40
06201	Hyalella azteca		4.0	3	Num	per of Orga	inisms:	264	mIBI:		33.07
06501	Gammaridae		4.0	4							
06810	Gammarus fasciatus		3.0	3							
17200	Caenis sp	MA	6.0	10							
53800	Hydroptila sp	CA	2.0	1							
59500	Oecetis sp	CA	5.0	3							
59550	Oecetis inconspicua complex sp A (sensu Floyd, 1995)	CA	5.0	1							
68700	Dubiraphia sp	СО	5.0	13							
68708	Dubiraphia vittata group	CO	5.0	2							
69400	Stenelmis sp	CO	7.0	3							
77130	Ablabesmyia rhamphe group		6.0	1							
77355	Clinotanypus pinguis		6.0	1							
78655	Procladius (Holotanypus) sp		8.0	13							
79020	Tanypus neopunctipennis		8.0	1							
80001	Orthocladiinae		6.0	1							
82710	Chironomus (C.) sp		11.0	3							
82800	Cladopelma sp		6.0	5							
82820	Cryptochironomus sp		8.0	6							
82885	Cryptotendipes pseudotener		6.0	2							
83040	Dicrotendipes neomodestus		6.0	3							
83050	Dicrotendipes lucifer		6.0	1							
83051	Dicrotendipes simpsoni		6.0	6							
83158	Endochironomus nigricans		6.0	3							
83300	Glyptotendipes (G.) sp		10.0	70							
83400	Harnischia sp		6.0	3							
83700	Microchironomus sp		6.0	1							
84210	Paratendipes albimanus or P. duplicat	us	3.0	1							
84450	Polypedilum (Uresipedilum) flavum		6.0	2							
84470	Polypedilum (P.) illinoense		6.0	5							
84540	Polypedilum (Tripodura) scalaenum group		6.0	8							
84700	Stenochironomus sp		3.0	1							
84800	Tribelos jucundum		5.0	1							
85230	Cladotanytarsus mancus group		7.0	1							
85800	Tanytarsus sp		7.0	6							
89501	Ephydridae		8.0	1							
02200	Hydrobiidae		6.0	1							

Sito	ust. US-41					Site ID: 1	3-3		
		0				Subsample:		RM:	98.7
	ction Date 07/19/2022 River	Code9	5-656	River:	DesPlaines River				
Taxa Code	Таха	Taxa Grp	Tol.	Quant	Taxa Code	Таха	Feed Grp	Tol.	Quant
01801	Turbellaria		6.0	2					
03600	Oligochaeta		10.0	19					
05800	Caecidotea sp		6.0	1					
06201	Hyalella azteca		4.0	12					
06800	Gammarus sp		3.0	47					
11001	Baetidae	MA	4.0	1					
12501	Heptageniidae	MA	3.5	1					
13400	Stenacron sp	MA	4.0	1					
22001	Coenagrionidae		5.5	19					
52200	Cheumatopsyche sp	CA	6.0	8					
53501	Hydroptilidae	CA	3.5	11					
59500	Oecetis sp	CA	5.0	1					
68700	Dubiraphia sp	СО	5.0	29					
69400	Stenelmis sp	СО	7.0	18					
78655	Procladius (Holotanypus) sp		8.0	3					
78680	Procladius (Psilotanypus) bellus		8.0	1					
80420	Cricotopus (C.) bicinctus		8.0	5					
80510	Cricotopus (Isocladius) sylvestris grou	р	8.0	2					
81231	Nanocladius (N.) crassicornus or N. (N "rectinervis"	۱.)	3.0	1					
82820	Cryptochironomus sp		8.0	1					
82885	Cryptotendipes pseudotener		6.0	2					
83000	Dicrotendipes sp		6.0	1					
83158	Endochironomus nigricans		6.0	9					
83300	Glyptotendipes (G.) sp		10.0	9					
84470	Polypedilum (P.) illinoense		6.0	14					
84540	Polypedilum (Tripodura) scalaenum group		6.0	10					
85230	Cladotanytarsus mancus group		7.0	1					
85625	Rheotanytarsus sp		6.0	5					
35800	Tanytarsus sp		7.0	3					
35821	Tanytarsus glabrescens group sp 7		7.0	1					
93200	Hydrobiidae		6.0	6					
95100	Physella sp		9.0	2					
95501	Planorbidae		6.5	1					
98001	Pisidiidae		5.0	6					
		Fotal T	axa:						
Num	ber of Organisms: 253 r	nIBI:		42.07					

Sitor	dst. McClare Ave.					Site ID:	13-2		
Sile.	dst. McChare Ave.					Subsample:		RM:	96.82
Collec	ction Date 07/19/2022	River Code9	5-656	River:	DesPlaines River				
Taxa Code	Таха	Taxa Grp	Tol.	Quant	Taxa Code	Таха	Fee Gr	ed p Tol.	Quant
03600	Oligochaeta		10.0	25					
05800	Caecidotea sp		6.0	1					
06800	Gammarus sp		3.0	72					
08250	Orconectes (Procericamba	arus) rusticus	5.0	3					
11130	Baetis intercalaris	MA	4.0	1					
13400	Stenacron sp	MA	4.0	5					
16700	Tricorythodes sp	MA	5.0	1					
52200	Cheumatopsyche sp	CA	6.0	16					
53800	Hydroptila sp	CA	2.0	8					
68700	Dubiraphia sp	CO	5.0	17					
69400	Stenelmis sp	CO	7.0	27					
77120	Ablabesmyia mallochi		6.0	2					
77130	Ablabesmyia rhamphe gro	up	6.0	3					
77750	Hayesomyia senata or Thienemannimyia norena		5.0	2					
78655	Procladius (Holotanypus) s	sp	8.0	1					
30420	Cricotopus (C.) bicinctus		8.0	1					
32820	Cryptochironomus sp		8.0	6					
32822	Cryptochironomus eminent	tia	0.0	1					
32880	Cryptotendipes sp		6.0	2					
33040	Dicrotendipes neomodestu	IS	6.0	7					
33158	Endochironomus nigricans		6.0	1					
33300	Glyptotendipes (G.) sp		10.0	5					
33400	Harnischia sp		6.0	2					
34450	Polypedilum (Uresipedilum	ı) flavum	6.0	4					
34470	Polypedilum (P.) illinoense		6.0	4					
34540	Polypedilum (Tripodura) so group	calaenum	6.0	35					
34700	Stenochironomus sp		3.0	1					
34800	Tribelos jucundum		5.0	1					
35201	Cladotanytarsus species g	roup A	7.0	1					
35265	Cladotanytarsus vanderwu	Ilpi group sp 5	7.0	8					
35625	Rheotanytarsus sp		6.0	2					
35800	Tanytarsus sp		7.0	15					
35840	Tanytarsus sepp		7.0	1					
93200	Hydrobiidae		6.0	6					
97601	Corbicula fluminea		4.0	10					
98001	Pisidiidae		5.0	6					
No C	Quantitative Taxa: 3	6 Total T	axa.	36					
		03 mlBl:	ала.	30 46.19					

Site	dst. Belvidere Rd.					Sit	e ID:	13-1	
Sile.	ust. Deividere Ru.					Sub	sample:	RM:	94.20
Colle	ction Date 07/19/2022 Riv	er Code9	5-656	River:	DesPlaines River				
Taxa Code	Таха	Taxa Grp	Tol.	Quant	Taxa Code	Таха		Feed Grp Tol.	Quant
01801	Turbellaria		6.0	10 –					
03600	Oligochaeta		10.0	7	No. Quantitative	Taxa:	38	Total Taxa:	38
06201	Hyalella azteca		4.0	4	Number of Organ	nisms:	312	mlBI:	54.91
06810	Gammarus fasciatus		3.0	33					
11001	Baetidae	MA	4.0	2					
11130	Baetis intercalaris	MA	4.0	2					
13400	Stenacron sp	MA	4.0	5					
16700	Tricorythodes sp	MA	5.0	15					
22001	Coenagrionidae		5.5	9					
52200	Cheumatopsyche sp	CA	6.0	17					
53800	Hydroptila sp	CA	2.0	17					
58505	Helicopsyche borealis	CA	2.0	1					
68700	Dubiraphia sp	CO	5.0	3					
68708	Dubiraphia vittata group	CO	5.0	64					
69400	Stenelmis sp	CO	7.0	19					
71910	Tipula abdominalis		0.0	1					
77750	Hayesomyia senata or Thienemannimyia norena		5.0	4					
78600	Pentaneura inconspicua		3.0	3					
78655	Procladius (Holotanypus) sp		8.0	6					
80001	Orthocladiinae		6.0	1					
82710	Chironomus (C.) sp		11.0	1					
82820	Cryptochironomus sp		8.0	1					
82885	Cryptotendipes pseudotener		6.0	1					
83040	Dicrotendipes neomodestus		6.0	5					
83158	Endochironomus nigricans		6.0	1					
84450	Polypedilum (Uresipedilum) flavun	า	6.0	4					
84470	Polypedilum (P.) illinoense		6.0	13					
84540	Polypedilum (Tripodura) scalaenu group	n	6.0	1					
85500	Paratanytarsus sp		6.0	4					
85625	Rheotanytarsus sp		6.0	20					
85800	Tanytarsus sp		7.0	1					
86501	Stratiomyidae		10.0	1					
93200	Hydrobiidae		6.0	16					
95100	Physella sp		9.0	1					
95501	Planorbidae		6.5	2					
97601	Corbicula fluminea		4.0	4					
98200	Pisidium sp		5.0	7					
	Sphaerium sp		5.0	6					

0.1						Site ID:	13-16		
Site:	dst. Buckley Rd.					Subsample:		RM:	90.6
Colle	ction Date:07/19/2022	River Code9	5-656	River:	DesPlaines River				
Taxa Code	Таха	Taxa Grp	Tol.	Quant	Taxa Code	Таха	Feed Grp	i Tol.	Quant
01801	Turbellaria		6.0	4					
03600	Oligochaeta		10.0	3					
04664	Helobdella stagnalis		8.0	1					
06201	Hyalella azteca		4.0	6					
06810	Gammarus fasciatus		3.0	65					
11001	Baetidae	MA	4.0	2					
11130	Baetis intercalaris	MA	4.0	33					
13400	Stenacron sp	MA	4.0	1					
13570	Maccaffertium terminatum	MA	4.0	1					
16700	Tricorythodes sp	MA	5.0	20					
17200	Caenis sp	MA	6.0	1					
22001	Coenagrionidae		5.5	4					
52200	Cheumatopsyche sp	CA	6.0						
53800	Hydroptila sp	CA	2.0						
58505	Helicopsyche borealis	CA	2.0						
68601	Ancyronyx variegata	СО	2.0						
68708	Dubiraphia vittata group	СО	5.0						
69400		СО	7.0						
74100	Simulium sp		6.0						
77750	Hayesomyia senata or Thienemannimyia norena		5.0						
78600	Pentaneura inconspicua		3.0	8					
80400	Cricotopus sp		8.0	1					
80420	Cricotopus (C.) bicinctus		8.0	1					
83040	Dicrotendipes neomodestus		6.0	5					
84450	Polypedilum (Uresipedilum) fla	vum	6.0	1					
84470	Polypedilum (P.) illinoense		6.0	18					
85500	Paratanytarsus sp		6.0	6					
85625	Rheotanytarsus sp		6.0	61					
85800	Tanytarsus sp		7.0	3					
93200	Hydrobiidae		6.0	13					
98200	Pisidium sp		5.0						
	Sphaerium sp		5.0	1					
No. C	Quantitative Taxa: 32	Total T	axa:	32					
Num	ber of Organisms: 313	mlBI:		60.10					

Site	dst. Rockland Rd.						Sit	te ID:	16-6		
Sile.	ust. Rockianu Ru.						Sub	sample:		RM:	87.10
Collec	ction Date 07/19/2022 Rive	er Code9	5-656	River:	DesPl	aines River					
Taxa Code	Таха	Taxa Grp	Tol.	Quant	Taxa Code		Таха		Fee Grp	d > Tol.	Quant
01801	Turbellaria		6.0	2	95501	Planorbidae				6.5	1
03600	Oligochaeta		10.0	6	97601	Corbicula flun	ninea			4.0	1
06201	Hyalella azteca		4.0	5	98001	Pisidiidae				5.0	5
06800	Gammarus sp		3.0	30 –							
08200	Orconectes sp		5.0	1	No. C	Quantitative	Taxa:	43	Tota	Taxa:	43
11130	Baetis intercalaris	MA	4.0	10	Num	per of Orgar	nisms:	320	mlBl		69.44
12501	Heptageniidae	MA	3.5	2							
13400	Stenacron sp	MA	4.0	1							
16700	Tricorythodes sp	MA	5.0	41							
22001	Coenagrionidae		5.5	40							
28500	Libellula sp		8.0	2							
52200	Cheumatopsyche sp	CA	6.0	2							
52570	Hydropsyche simulans	CA	5.0	1							
53800	Hydroptila sp	CA	2.0	51							
59415	Nectopsyche exquisita	CA	3.0	1							
59500	Oecetis sp	CA	5.0	1							
68700	Dubiraphia sp	CO	5.0	4							
68901	Macronychus glabratus	CO	2.0	2							
69400	Stenelmis sp	CO	7.0	2							
77120	Ablabesmyia mallochi		6.0	1							
77130	Ablabesmyia rhamphe group		6.0	1							
77750	Hayesomyia senata or Thienemannimyia norena		5.0	3							
78600	Pentaneura inconspicua		3.0	8							
78655	Procladius (Holotanypus) sp		8.0	5							
80420	Cricotopus (C.) bicinctus		8.0	1							
81200	Nanocladius sp		3.0	1							
82121	Thienemanniella lobapodema		2.0	1							
82141	Thienemanniella xena		2.0	1							
82822	Cryptochironomus eminentia		0.0	1							
82880	Cryptotendipes sp		6.0	2							
83040	Dicrotendipes neomodestus		6.0	6							
84450	Polypedilum (Uresipedilum) flavum		6.0	4							
84470	Polypedilum (P.) illinoense		6.0	25							
84700	Stenochironomus sp		3.0	2							
85265	Cladotanytarsus vanderwulpi group	sp 5	7.0	2							
85500	Paratanytarsus sp		6.0	7							
85625	Rheotanytarsus sp		6.0	15							
85800	Tanytarsus sp		7.0	3							
85821	Tanytarsus glabrescens group sp 7	,	7.0	14							
05100	Physella sp		9.0	6							

Site	ust. dam site						Sit	e ID:	16-7		
Sile.	ust. dam site						Sub	sample:		RM:	84.60
Colle	ction Date:07/19/2022 River	Code9	5-656	River	DesPl	aines River					
Taxa Code	Таха	Taxa Grp	Tol.	Quant	Taxa Code		Таха		Fee Gri	d > Tol.	Quant
01801	Turbellaria		6.0	25	96801	Ancylidae				7.0	1
03600	Oligochaeta		10.0	9	97601	Corbicula flun	ninea			4.0	2
05800	Caecidotea sp		6.0	2	98001	Pisidiidae				5.0	8
06201	Hyalella azteca		4.0	1	98200	Pisidium sp				5.0	12
06810	Gammarus fasciatus		3.0	58	98600	Sphaerium sp)			5.0	1
11001	Baetidae	MA	4.0	2 -							
11120	Baetis flavistriga	MA	4.0	7	No. C	Quantitative	Taxa:	43	Tota	Taxa:	43
11130	Baetis intercalaris	MA	4.0	21	Num	ber of Orgar	nisms:	353	mlBl		60.13
11620	Paracloeodes minutus	MA	5.0	1							
16700	Tricorythodes sp	MA	5.0	38							
22001	Coenagrionidae		5.5	4							
27001	Corduliidae		4.5	1							
52200	Cheumatopsyche sp	CA	6.0	25							
53800	Hydroptila sp	CA	2.0	20							
59407	Nectopsyche candida	CA	3.0	2							
59500	Oecetis sp	CA	5.0	2							
68700	Dubiraphia sp	CO	5.0	1							
68901	Macronychus glabratus	CO	2.0	2							
69400	Stenelmis sp	CO	7.0	6							
77750	Hayesomyia senata or Thienemannimyia norena		5.0	1							
78600	Pentaneura inconspicua		3.0	6							
78655	Procladius (Holotanypus) sp		8.0	2							
80001	Orthocladiinae		6.0	1							
81825	Rheocricotopus (Psilocricotopus) robacki		6.0	1							
82100	Thienemanniella sp		2.0	1							
83040	Dicrotendipes neomodestus		6.0	2							
83820	Microtendipes "caelum" (sensu Simp & Bode, 1980)	son	6.0	4							
84450	Polypedilum (Uresipedilum) flavum		6.0	21							
84470	Polypedilum (P.) illinoense		6.0	27							
84520	Polypedilum (Tripodura) halterale gro	oup	6.0	1							
84540	Polypedilum (Tripodura) scalaenum group		6.0	3							
84800	Tribelos jucundum		5.0	1							
85265	Cladotanytarsus vanderwulpi group s	sp 5	7.0	3							
85500	Paratanytarsus sp		6.0	1							
85625	Rheotanytarsus sp		6.0	15							
85821	Tanytarsus glabrescens group sp 7		7.0	2							
85840	Tanytarsus sepp		7.0	2							
02200	Hydrobiidae		6.0	8							

Site	dst. E. Townline Rd.						Site	e ID:	16-5		
Sile.	usi. E. Townine Ru.						Sub	sample:		RM:	83.60
Collec	ction Date 07/20/2022 River	r Code9	5-656	River:	DesPl	aines River					
Taxa Code	Таха	Taxa Grp	Tol.	Quant	Taxa Code		Таха			eed Grp Tol.	Quant
01801	Turbellaria		6.0	8	85625	Rheotanytarsu	us sp			6.0	11
03600	Oligochaeta		10.0	8	85800	Tanytarsus sp				7.0	1
06800	Gammarus sp		3.0	20	85821	Tanytarsus gla	abrescens	s group s	р 7	7.0	8
11120	Baetis flavistriga	MA	4.0	1	85840	Tanytarsus se	рр			7.0	1
11130	Baetis intercalaris	MA	4.0	19	93200	Hydrobiidae				6.0	1
11620	Paracloeodes minutus	MA	5.0	3	97601	Corbicula flum	ninea			4.0	1
16700	Tricorythodes sp	MA	5.0	29	98001	Pisidiidae				5.0	9
22001	Coenagrionidae		5.5	15 –							
52200	Cheumatopsyche sp	CA	6.0	9	No. G	Quantitative	Taxa:	44	Tot	al Taxa:	44
53800	Hydroptila sp	CA	2.0	3	Num	per of Organ	isms:	285	ml	BI:	48.15
59407	Nectopsyche candida	CA	3.0	1							
59500	Oecetis sp	CA	5.0	1							
59550	Oecetis inconspicua complex sp A (sensu Floyd, 1995)	CA	5.0	1							
68901	Macronychus glabratus	со	2.0	3							
69400	Stenelmis sp	со	7.0	3							
77001	Tanypodinae		6.0	1							
77750	Hayesomyia senata or Thienemannimyia norena		5.0	5							
78600	Pentaneura inconspicua		3.0	2							
80001	Orthocladiinae		6.0	2							
80420	Cricotopus (C.) bicinctus		8.0	13							
80510	Cricotopus (Isocladius) sylvestris gro	oup	8.0	2							
81825	Rheocricotopus (Psilocricotopus) robacki		6.0	1							
82820	Cryptochironomus sp		8.0	1							
82822	Cryptochironomus eminentia		0.0	2							
83040	Dicrotendipes neomodestus		6.0	11							
83820	Microtendipes "caelum" (sensu Simp & Bode, 1980)	oson	6.0	3							
84155	Paralauterborniella nigrohalteralis		6.0	1							
84210	Paratendipes albimanus or P. duplic	atus	3.0	1							
84450	Polypedilum (Uresipedilum) flavum		6.0	5							
84470	Polypedilum (P.) illinoense		6.0	32							
84520	Polypedilum (Tripodura) halterale gr	oup	6.0	6							
84540	Polypedilum (Tripodura) scalaenum group		6.0	2							
84612	Saetheria tylus		4.0	1							
85230	Cladotanytarsus mancus group		7.0	1							
85261	Cladotanytarsus vanderwulpi		7.0	1							
85265	Cladotanytarsus vanderwulpi group	sp 5	7.0	33							
	Paratanytarsus sp		6.0	3							

Siter	ust dom					s	Site ID:	16-8		
Site:	ust. dam					Si	ubsample:		RM:	82.90
Collec	ction Date:07/22/2022 River Co	ode9	5-656	River	DesPl	aines River				
Таха		Таха			Таха			Feed		
Code	Таха	Grp	Tol.	Quant	Code	Taxa	а	Grp	Tol.	Quant
01801	Turbellaria		6.0	1	85265	Cladotanytarsus van	derwulpi gr	oup sp 5	7.0	22
03600	Oligochaeta		10.0	2	85625	Rheotanytarsus sp			6.0	6
06201	Hyalella azteca		4.0	9	85800	Tanytarsus sp			7.0	2
06501	Gammaridae		4.0	18	85814	Tanytarsus glabresce	ens group		7.0	1
06800	Gammarus sp		3.0	36	85840	Tanytarsus sepp			7.0	2
08250	Orconectes (Procericambarus) rusticus		5.0	1	95100	Physella sp			9.0	5
11001	Baetidae	MA	4.0	2	97601	Corbicula fluminea			4.0	1
11120	Baetis flavistriga	MA	4.0	2	98600	Sphaerium sp			5.0	2
11130	Baetis intercalaris	MA	4.0	16 –						
11620	Paracloeodes minutus	MA	5.0	7	No. C	Quantitative Taxa:	47	Total	Taxa:	47
12501	Heptageniidae	MA	3.5	1	Num	per of Organisms:	300	mIBI:		55.95
16700	Tricorythodes sp	MA	5.0	40						
21001	Calopterygidae		3.5	1						
22001	Coenagrionidae		5.5	30						
52200	Cheumatopsyche sp	CA	6.0	15						
53800	Hydroptila sp	CA	2.0	2						
59550	Oecetis inconspicua complex sp A (sensu Floyd, 1995)	CA	5.0	3						
68901	Macronychus glabratus	СО	2.0	1						
69400	Stenelmis sp	СО	7.0	4						
77001	Tanypodinae		6.0	1						
77750	Hayesomyia senata or Thienemannimyia norena		5.0	8						
78600	Pentaneura inconspicua		3.0	5						
78655	Procladius (Holotanypus) sp		8.0	2						
80420	Cricotopus (C.) bicinctus		8.0	3						
80510	Cricotopus (Isocladius) sylvestris group		8.0	4						
82141	Thienemanniella xena		2.0	1						
82820	Cryptochironomus sp		8.0	1						
82822	Cryptochironomus eminentia		0.0	3						
83000	Dicrotendipes sp		6.0	2						
83040	Dicrotendipes neomodestus		6.0	7						
83820	Microtendipes "caelum" (sensu Simpson & Bode, 1980)	1	6.0	6						
84315	Phaenopsectra flavipes		4.0	1						
84450	Polypedilum (Uresipedilum) flavum		6.0	2						
84470	Polypedilum (P.) illinoense		6.0	12						
84520	Polypedilum (Tripodura) halterale group		6.0	1						
84612	Saetheria tylus		4.0	1						
84700	Stenochironomus sp		3.0	2						
84800	Tribelos jucundum		5.0	1						
	Cladotanytarsus mancus group		7.0	5						

Site	dst. Half Day Rd.						Sit	e ID:	16-4		
one.	ust. Hall Day Nu.						Sub	sample:		RM:	80.00
Colle	ction Date:07/20/2022 River	Code9	5-656	Rive	er: DesPl	aines River					
Taxa Code	Таха	Taxa Grp	Tol.	Quant	Taxa Code		Таха		Feed Grp	l Tol.	Quant
01801	Turbellaria		6.0	9	98001	Pisidiidae				5.0	6
03600	Oligochaeta		10.0	11	98200	Pisidium sp				5.0	1
06800	Gammarus sp		3.0	35	98600	Sphaerium sp				5.0	1
11001	Baetidae	MA	4.0	2							
11130	Baetis intercalaris	MA	4.0	21	No. C	Quantitative	Taxa:	41	Total	Taxa:	41
11590	Paracloeodes sp	MA	4.0	1	Num	ber of Organ	isms:	299	mIBI:		65.81
13400	Stenacron sp	MA	4.0	5							
13550	Maccaffertium mexicanum integrum		0.0	5							
13570	Maccaffertium terminatum	MA	4.0	2							
16700	Tricorythodes sp	MA	5.0	71							
22001	Coenagrionidae		5.5	2							
52200	Cheumatopsyche sp	CA	6.0	15							
52570	Hydropsyche simulans	CA	5.0	6							
53800	Hydroptila sp	CA	2.0	15							
59407	Nectopsyche candida	CA	3.0	1							
59550	Oecetis inconspicua complex sp A (sensu Floyd, 1995)	CA	5.0	3							
68700	Dubiraphia sp	CO	5.0	5							
68708	Dubiraphia vittata group	СО	5.0	2							
68901	Macronychus glabratus	СО	2.0	2							
69400	Stenelmis sp	CO	7.0	18							
77120	Ablabesmyia mallochi		6.0	1							
77750	Hayesomyia senata or Thienemannimyia norena		5.0	5							
78600	Pentaneura inconspicua		3.0	3							
82885	Cryptotendipes pseudotener		6.0	1							
83040	Dicrotendipes neomodestus		6.0	6							
83820	Microtendipes "caelum" (sensu Simps & Bode, 1980)	on	6.0	1							
84450	Polypedilum (Uresipedilum) flavum		6.0	9							
84470	Polypedilum (P.) illinoense		6.0	12							
84520	Polypedilum (Tripodura) halterale grou	qu	6.0	1							
84540	Polypedilum (Tripodura) scalaenum group		6.0	1							
85265	Cladotanytarsus vanderwulpi group sp	o 5	7.0	1							
85500	Paratanytarsus sp		6.0	4							
85625	Rheotanytarsus sp		6.0	3							
85800	Tanytarsus sp		7.0	2							
85821	Tanytarsus glabrescens group sp 7		7.0	5							
93200	Hydrobiidae		6.0	2							
95100	Physella sp		9.0	1							
97601	Corbicula fluminea		4.0	2							

Site:	dst. Deerfield Rd.					Sit	e ID:	16-3		
one.						Sub	sample:		RM:	76.70
Collec	ction Date:07/20/2022 River	Code9	5-656	River:	DesPlaines River					
Taxa Code	Таха	Taxa Grp	Tol.	Quant	Taxa Code	Таха		Feed Grp	Tol.	Quant
01801	Turbellaria		6.0	3 –						
03600	Oligochaeta		10.0	15	No. Quantitative	Taxa:	38	Total	Taxa:	38
04660	Helobdella sp		8.0	1	Number of Orga	nisms:	272	mlBI:		48.42
06201	Hyalella azteca		4.0	5						
06800	Gammarus sp		3.0	74						
11200	Callibaetis sp	MA	4.0	2						
13570	Maccaffertium terminatum	MA	4.0	1						
16700	Tricorythodes sp	MA	5.0	19						
22001	Coenagrionidae		5.5	38						
28500	Libellula sp		8.0	1						
52200	Cheumatopsyche sp	CA	6.0	1						
53501	Hydroptilidae	CA	3.5	8						
59550	Oecetis inconspicua complex sp A (sensu Floyd, 1995)	CA	5.0	1						
68601	Ancyronyx variegata	CO	2.0	2						
68700	Dubiraphia sp	CO	5.0	13						
68901	Macronychus glabratus	CO	2.0	4						
69400	Stenelmis sp	CO	7.0	4						
77120	Ablabesmyia mallochi		6.0	1						
77140	Ablabesmyia peleensis		6.0	1						
77750	Hayesomyia senata or Thienemannimyia norena		5.0	2						
78655	Procladius (Holotanypus) sp		8.0	11						
83000	Dicrotendipes sp		6.0	1						
83040	Dicrotendipes neomodestus		6.0	5						
83050	Dicrotendipes lucifer		6.0	2						
84300	Phaenopsectra obediens group		4.0	3						
84315	Phaenopsectra flavipes		4.0	1						
84450	Polypedilum (Uresipedilum) flavum		6.0	2						
84470	Polypedilum (P.) illinoense		6.0	5						
	Polypedilum (Tripodura) halterale gro	up	6.0	1						
84540	Polypedilum (Tripodura) scalaenum group		6.0	4						
85265	Cladotanytarsus vanderwulpi group s	р 5	7.0	1						
85500	Paratanytarsus sp		6.0	4						
85625	Rheotanytarsus sp		6.0	9						
85800	Tanytarsus sp		7.0	7						
85821	Tanytarsus glabrescens group sp 7		7.0	8						
93200	Hydrobiidae		6.0	3						
95100	Physella sp		9.0	3						
98001	Pisidiidae		5.0	6						

Site [.]	dst. Lake Cook Rd.					Sit	e ID:	16-2		
one.	usi. Lake Cook Nu.					Sub	sample:		RM:	75.40
Colle	ction Date:07/20/2022 R	iver Code	95-656	River:	DesPlaines River					
Taxa Code	Таха	Taxa Grp		Quant	Taxa Code	Таха		Feed Grp	t Tol.	Quant
01801	Turbellaria		6.0	3 –						
03600	Oligochaeta		10.0	7	No. Quantitative	Taxa:	40	Total	Taxa:	40
06201	Hyalella azteca		4.0	12	Number of Orga	nisms:	338	mlBI:		61.25
06800	Gammarus sp		3.0	29						
11120	Baetis flavistriga	MA	4.0	14						
11130	Baetis intercalaris	MA	4.0	13						
11200	Callibaetis sp	MA	4.0	1						
11670	Procloeon viridoculare	MA	4.0	1						
13570	Maccaffertium terminatum	MA	4.0	1						
16700	Tricorythodes sp	MA	5.0	25						
17200	Caenis sp	MA	6.0	2						
22001	Coenagrionidae		5.5	19						
22300	Argia sp		5.0	1						
52200	Cheumatopsyche sp	CA	6.0	9						
52570	Hydropsyche simulans	CA	5.0	1						
	Hydroptila sp	CA	2.0	13						
58505	Helicopsyche borealis	CA	2.0	5						
59500	Oecetis sp	CA	5.0	1						
68700	Dubiraphia sp	CO	5.0	12						
69400	Stenelmis sp	CO	7.0	21						
77120			6.0	1						
	Ablabesmyia peleensis		6.0	1						
77750	Hayesomyia senata or Thienemannimyia norena		5.0	2						
78600	Pentaneura inconspicua		3.0	3						
78655	Procladius (Holotanypus) sp		8.0	3						
80420	Cricotopus (C.) bicinctus		8.0	1						
82885	Cryptotendipes pseudotener		6.0	3						
83040	Dicrotendipes neomodestus		6.0	3						
84400	Polypedilum sp		6.0	1						
84450	Polypedilum (Uresipedilum) flav	um	6.0	18						
84470	Polypedilum (P.) illinoense		6.0	7						
85265	Cladotanytarsus vanderwulpi gro	oup sp 5	7.0	2						
85500	Paratanytarsus sp		6.0	5						
85625	Rheotanytarsus sp		6.0	47						
85821	Tanytarsus glabrescens group s	p 7	7.0	2						
93200	Hydrobiidae		6.0	8						
93900	Elimia sp		6.0							
95100	Physella sp		9.0	30						
97601			4.0	1						
98001	Pisidiidae		5.0	5						

Sito	ust E. Dolotino Pd					Site ID:	16-1		
Sile.	ust. E. Palatine Rd.					Subsample:		RM:	71.7
Collec	tion Date:07/21/2022 River C	ode9	5-656	River:	DesPlaines River				
Taxa Code	Таха	Taxa Grp	Tol.	Quant	Taxa Code	Таха	Feed Grp	d Tol.	Quant
01801	Turbellaria		6.0	2					
03600	Oligochaeta		10.0	16					
04660	Helobdella sp		8.0	1					
04964	Erpobdella microstoma		8.0	1					
06810	Gammarus fasciatus		3.0	12					
11130	Baetis intercalaris	MA	4.0	4					
11620	Paracloeodes minutus	MA	5.0	6					
16700	Tricorythodes sp	MA	5.0	77					
22001	Coenagrionidae		5.5	27					
52200	Cheumatopsyche sp	CA	6.0	2					
53800	Hydroptila sp	CA	2.0	4					
58505	Helicopsyche borealis	CA	2.0	4					
59400	Nectopsyche sp	CA	3.0	1					
68700	Dubiraphia sp	со	5.0	2					
69400	Stenelmis sp	со	7.0	6					
74100	Simulium sp		6.0	1					
	Hayesomyia senata or Thienemannimyia norena		5.0	2					
78600	Pentaneura inconspicua		3.0	3					
78655	Procladius (Holotanypus) sp		8.0	1					
80420	Cricotopus (C.) bicinctus		8.0	1					
82710	Chironomus (C.) sp		11.0	1					
82822	Cryptochironomus eminentia		0.0	3					
83040	Dicrotendipes neomodestus		6.0	4					
84450	Polypedilum (Uresipedilum) flavum		6.0	2					
84470	Polypedilum (P.) illinoense		6.0	3					
84520	Polypedilum (Tripodura) halterale group)	6.0	14					
84612	Saetheria tylus		4.0	1					
84700	Stenochironomus sp		3.0	1					
85265	Cladotanytarsus vanderwulpi group sp {	5	7.0	47					
85500	Paratanytarsus sp		6.0	2					
85625	Rheotanytarsus sp		6.0	9					
85800	Tanytarsus sp		7.0	1					
93200	Hydrobiidae		6.0	16					
96801	Ancylidae		7.0	1					
97601	Corbicula fluminea		4.0	4					
98001	Pisidiidae		5.0	8					
No. Q	uantitative Taxa: 36 To	otal T	axa:	36					
Numb	er of Organisms: 290 m	IBI:		53.82					

Siter	ust Mill Crock MMATD					Sit	te ID:	11-2	
Site:	ust. Mill Creek WWTP					Sub	osample:	RM:	1.7
Collec	ction Date:07/21/2022 River	Code9	5-995	Rive	r: Mill Creek				
Taxa Code	Таха	Taxa Grp	Tol.	Quant	Taxa Code	Таха		Feed Grp Tol.	Quant
01801	Turbellaria		6.0	12					
03600	Oligochaeta		10.0	14	No. Quantitat	ive Taxa:	38	Total Taxa:	38
05800	Caecidotea sp		6.0	1	Number of O	rganisms:	358	mIBI:	44.72
06201	Hyalella azteca		4.0	6					
11130	Baetis intercalaris	MA	4.0	10					
16700	Tricorythodes sp	MA	5.0	9					
17200	Caenis sp	MA	6.0	1					
22001	Coenagrionidae		5.5	2					
28500	Libellula sp		8.0	1					
52200	Cheumatopsyche sp	CA	6.0	91					
52500	Hydropsyche sp	CA	5.0	51					
52530	Hydropsyche depravata group	CA	5.0	1					
59500	Oecetis sp	CA	5.0	3					
68700	Dubiraphia sp	CO	5.0	14					
69400	Stenelmis sp	CO	7.0	5					
74100	Simulium sp		6.0	1					
77120	Ablabesmyia mallochi		6.0	1					
77130	Ablabesmyia rhamphe group		6.0	1					
77750	Hayesomyia senata or Thienemannimyia norena		5.0	3					
78655	Procladius (Holotanypus) sp		8.0	5					
80420	Cricotopus (C.) bicinctus		8.0	1					
81240	Nanocladius (N.) distinctus		3.0	1					
82730	Chironomus (C.) decorus group		11.0	3					
82800	Cladopelma sp		6.0	1					
82820	Cryptochironomus sp		8.0	1					
82885	Cryptotendipes pseudotener		6.0	4					
83040	Dicrotendipes neomodestus		6.0	14					
83158	Endochironomus nigricans		6.0	1					
83300	Glyptotendipes (G.) sp		10.0	4					
84040	Parachironomus frequens		8.0	1					
84450	Polypedilum (Uresipedilum) flavum		6.0	43					
84470	Polypedilum (P.) illinoense		6.0	1					
84540	Polypedilum (Tripodura) scalaenum group		6.0	2					
85800	Tanytarsus sp		7.0	2					
87540	Hemerodromia sp		6.0	1					
93200	Hydrobiidae		6.0	7					
95100	Physella sp		9.0	1					
98600	Sphaerium sp		5.0	38					

					Site ID:	10-7		
Site: ust. Edwards Rd.					Subsample:		RM:	11.3
Collection Date:07/21/2022	River Code9	5-996	River:	North Mill Creek				
Taxa Code Taxa	Taxa Grp	Tol.	Quant	Taxa Code	Таха	Fee Grp	d Tol.	Quant
01801 Turbellaria		6.0	7					
03600 Oligochaeta		10.0	31					
04664 Helobdella stagnalis		8.0	7					
05800 Caecidotea sp		6.0	36					
05900 Lirceus sp		4.0	8					
06800 Gammarus sp		3.0	63					
12501 Heptageniidae	MA	3.5	1					
22001 Coenagrionidae		5.5	6					
48220 Chauliodes rastricornis		4.0	1					
53501 Hydroptilidae	CA	3.5	2					
68700 Dubiraphia sp	CO	5.0	7					
74501 Ceratopogonidae		5.0	1					
77120 Ablabesmyia mallochi		6.0	1					
77130 Ablabesmyia rhamphe group)	6.0	1					
77355 Clinotanypus pinguis		6.0	6					
77500 Conchapelopia sp		6.0	3					
77750 Hayesomyia senata or Thienemannimyia norena		5.0	5					
78600 Pentaneura inconspicua		3.0	1					
82880 Cryptotendipes sp		6.0	1					
84210 Paratendipes albimanus or F	P. duplicatus	3.0	1					
84470 Polypedilum (P.) illinoense		6.0	1					
85500 Paratanytarsus sp		6.0	1					
85625 Rheotanytarsus sp		6.0	2					
85840 Tanytarsus sepp		7.0	1					
93200 Hydrobiidae		6.0	12					
94800 Stagnicola sp		7.0	4					
95100 Physella sp		9.0	44					
95900 Gyraulus sp		6.0	3					
96264 Planorbella (Pierosoma) pils	bryi	6.5	1					
98200 Pisidium sp		5.0	31					
98600 Sphaerium sp		5.0	8					
No. Quantitative Taxa: 31	Total T	ava:	21					
No. Quantitative Taxa: 31 Number of Organisms: 29	Total T 7 mIBI:	axa.	40.49					

Appendix Table B-4. Macroinvertebrate taxa collected in the 2022 Upper Des Plaines River study area.

6.0

6.0

5.0

6.0

8.0

3.0

4.0

2.0

6.0

8.0

6.0

6.0

6.0

4.0

6.0

1

1

6

1

2 1

1

1

2

2

4

9

4

2

3

77140 Ablabesmyia peleensis

77750 Hayesomyia senata or

78450 Nilotanypus fimbriatus78655 Procladius (Holotanypus) sp

"rectinervis" 81650 Parametriocnemus sp

82141 Thienemanniella xena

82820 Cryptochironomus sp

& Bode, 1980)

82885 Cryptotendipes pseudotener

82501 Chironomini

Thienemannimyia norena

81231 Nanocladius (N.) crassicornus or N. (N.)

83820 Microtendipes "caelum" (sensu Simpson

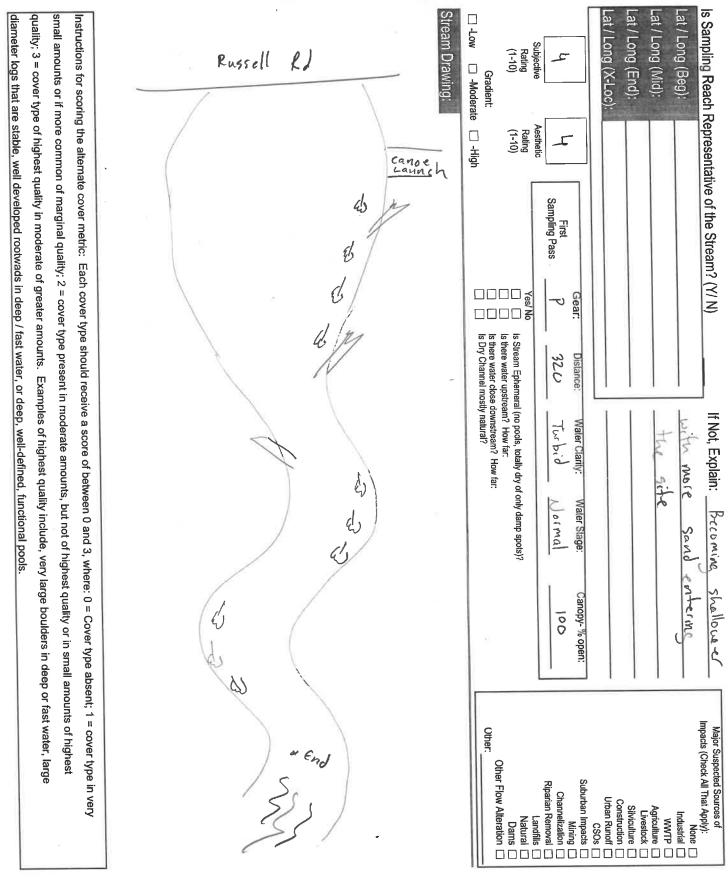
84155 Paralauterborniella nigrohalteralis

84300 Phaenopsectra obediens group84450 Polypedilum (Uresipedilum) flavum

77500 Conchapelopia sp

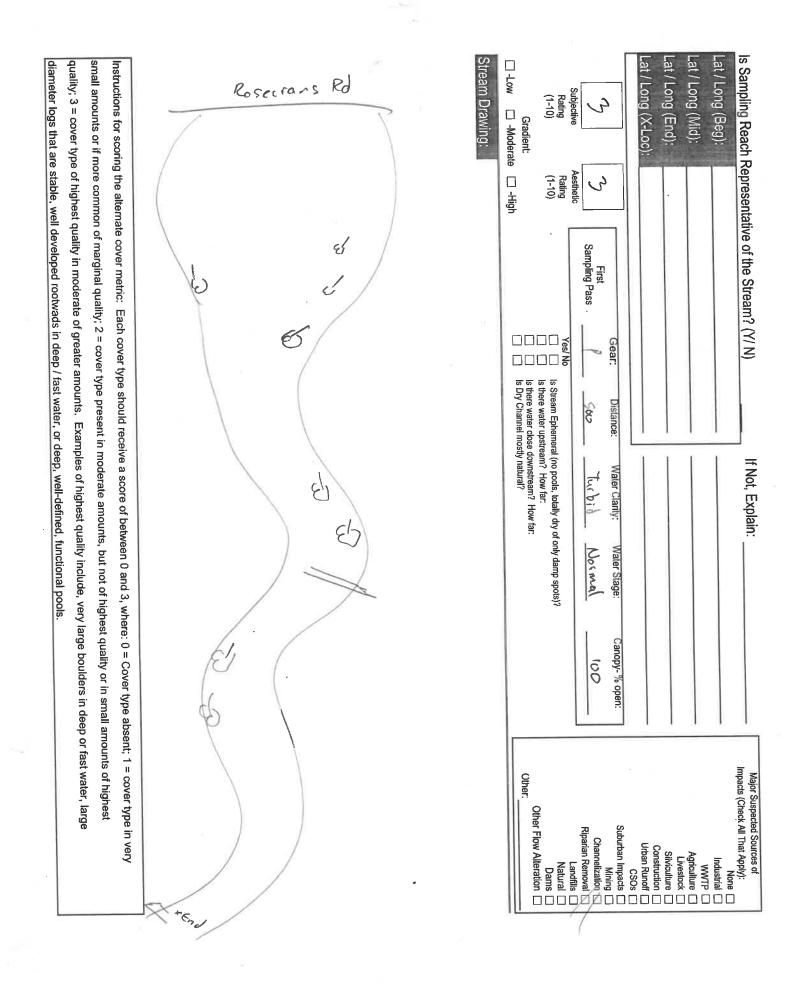
Sita	dst. Millburn Rd.					Sit	te ID: 10-1			
one.	ust. Millburn Nu.					Sub	sample:		RM:	1.10
Collec	ction Date:07/21/2022	River Code9	5-996	River	: North	Mill Creek				
Таха		Таха			Таха			Feed		
Code	Таха	Grp	Tol.	Quant	Code	Таха		Grp	Tol.	Quant
01801	Turbellaria		6.0	5	84470	Polypedilum (P.) illinoe	ense		6.0	9
03600	Oligochaeta		10.0	12	84540	Polypedilum (Tripodura	a) scalaenum		6.0	3
05800	Caecidotea sp		6.0	21		group				
06201	Hyalella azteca		4.0	7	84700	Stenochironomus sp			3.0	3
06810	Gammarus fasciatus		3.0	7	85230	Cladotanytarsus manc	us group		7.0	2
08200	Orconectes sp		5.0	1	85265	Cladotanytarsus vande	erwulpi group s	р 5	7.0	1
11001	Baetidae	MA	4.0	2	85500	Paratanytarsus sp			6.0	8
11120	Baetis flavistriga	MA	4.0	17	85625	Rheotanytarsus sp			6.0	5
11130	Baetis intercalaris	MA	4.0	1	85800	Tanytarsus sp			7.0	5
12501	Heptageniidae	MA	3.5	4	85821	Tanytarsus glabrescen	s group sp 7		7.0	2
13400	Stenacron sp	MA	4.0	10	95100	Physella sp			9.0	1
17200	Caenis sp	MA	6.0	4	98001	Pisidiidae			5.0	5
22001	Coenagrionidae		5.5	24						
23501	Aeshnidae		4.5	1	No. C	Quantitative Taxa:	50	Total T	Гаха:	50
52001	Hydropsychidae	CA	5.5	5	Num	per of Organisms:	314	mIBI:		63.45
52200	Cheumatopsyche sp	CA	6.0	40						
52430	Ceratopsyche morosa group	CA	4.0	3						
52530	Hydropsyche depravata group	CA	5.0	3						
53800	Hydroptila sp	CA	2.0	4						
59500	Oecetis sp	CA	5.0	2						
68700	Dubiraphia sp	СО	5.0	18						
68708	Dubiraphia vittata group	со	5.0	9						
68901	Macronychus glabratus	со	2.0	14						
69400	Stenelmis sp	СО	7.0	16						

APPENDIX C

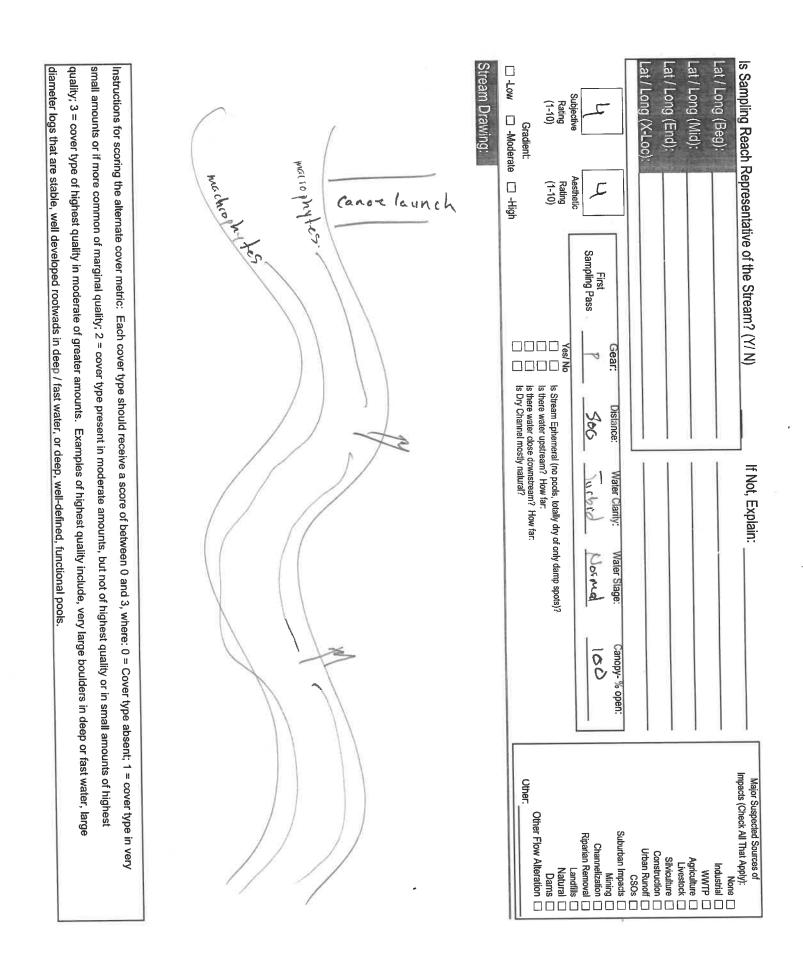

Upper Des Plaines River 2022 Habitat Data

C-1: Upper Des Plaines 2022 QHEI Metrics & Scores C-2: QHEI Field Sheets 2022

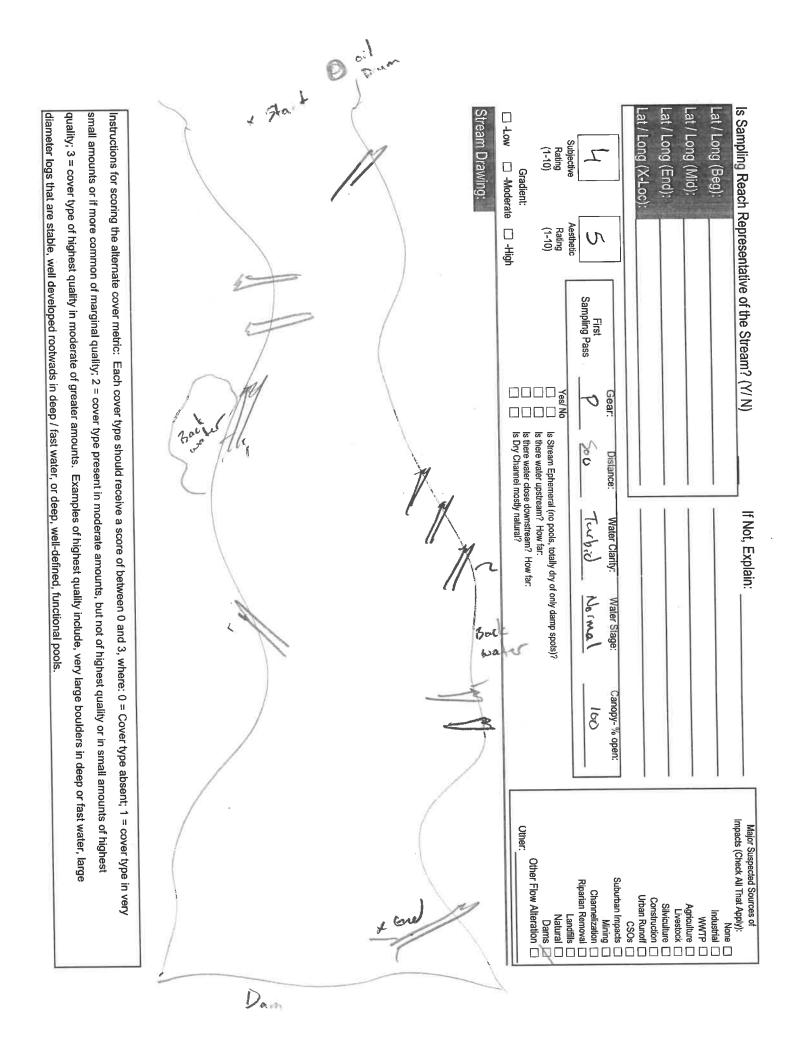
Appendix 1	able C-1 .	QHEI and	d metric s	cores in the	Year 5 Up	per Des Pla	ines River	study area.			
	River			Substrate	Cover	Channel	Riparian		Riffle	Gradient	Gradient
Site ID	Mile	Year	QHEI	Score	Score	Score	Score	Pool Score	Score	Value	Score
				Des	Plaines Rive	er- (94-656)	- 2022				
13-6	109.3	2022	49.00	4.5	8.0	10.5	10.50	5.0	1.0	5.64	10
13-5	106.6	2022	35.75	0.0	10.0	4.5	6.25	5.0	0.0	5.15	10
13-4	102.9	2022	46.00	0.0	15.0	6.0	11.00	5.0	0.0	4.67	10
13-19	99.72	2022	74.75	14.0	17.0	13.0	8.75	10.0	4.0	2.63	8
13-18	99.3	2022	38.00	0.0	15.0	2.5	7.50	5.0	0.0	2.63	8
13-3	98.7	2022	72.75	15.0	16.0	12.0	8.75	7.0	4.0	4.26	10
13-2	96.82	2022	78.25	15.0	15.0	14.0	6.25	10.0	8.0	4.03	10
13-1	94.2	2022	66.00	14.0	17.0	11.0	7.00	8.0	1.0	3.61	8
13-16	90.6	2022	70.50	14.0	17.0	14.0	5.50	10.0	2.0	3.32	8
16-6	87.1	2022	69.50	15.0	16.0	12.0	7.50	9.0	2.0	2.70	8
16-7	84.6	2022	75.25	13.0	16.0	14.0	8.75	10.0	5.5	2.77	8
16-5	83.6	2022	60.25	11.5	15.0	10.0	8.75	7.0	0.0	2.72	8
16-8	82.9	2022	61.00	11.0	15.0	11.0	9.00	7.0	0.0	2.63	8
16-4	80	2022	67.00	14.5	17.0	12.0	4.50	9.0	2.0	2.38	8
16-3	76.7	2022	61.75	10.5	16.0	13.0	7.25	7.0	0.0	2.23	8
16-2	75.4	2022	59.25	11.0	17.0	9.0	7.25	7.0	0.0	2.19	8
16-1	71.7	2022	71.00	15.0	16.0	12.0	10.00	8.0	2.0	2.13	8
					Mill Creek (95-995) - 20	22	1		T	
11-2	1.71	2022	83.75	16.0	16.0	17.5	9.25	9.0	8.0	7.30	8
				No	orth Mill Cre	ek (95-996)	- 202	1		T	
10-7	11.3	2022	28.50	2.0	9.0	6.0	6.50	1.0	0.0	2.60	4
10-1	1.1	2022	50.00	6.0	15.0	10.0	5.00	6.0	2.0	5.24	6
	Exce		<u>></u> 84.5								
	Go Fa		75.9-84.4 50.1-75.8								
	Po		25-50								
	Very		<25								

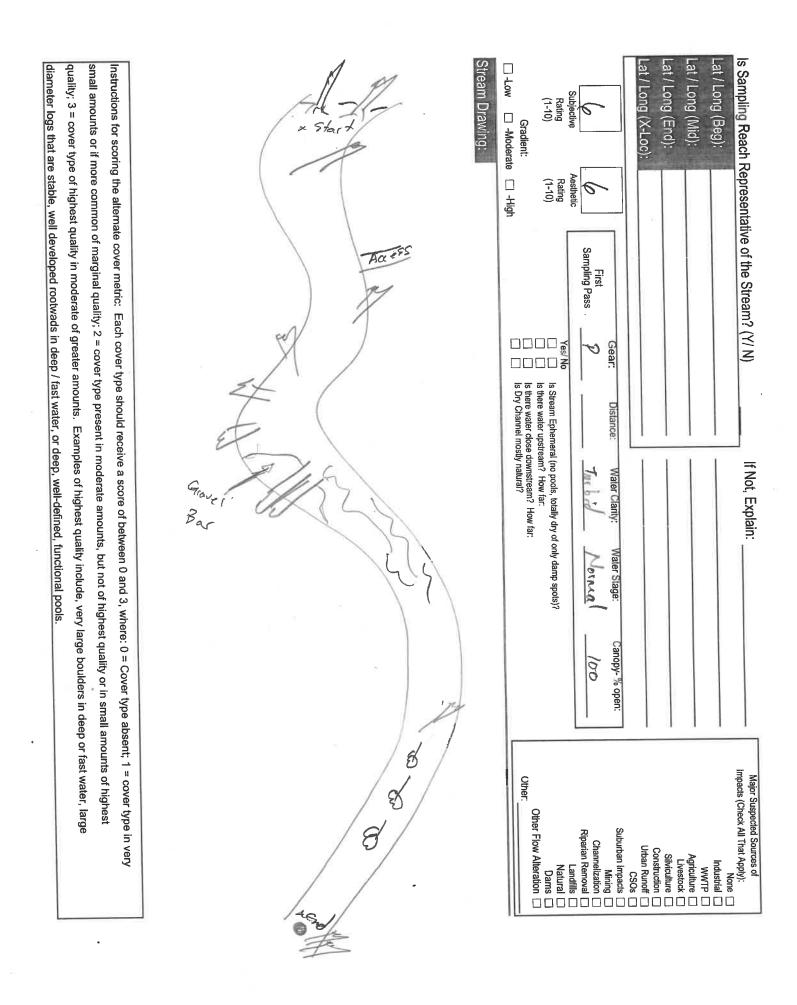

Qualitative Habit	at Evaluation Index Fi	ield Sheet QHEI Score:	49
River Code: 95-656 RM: 109.3 Stream:	Des Plaines Rive		
Site Code: 13-6 Project Code: Deix 27 Location Date: 6-24-7077 Scorer: MAS Latitude:		Longitude: - 87,97,523	
1.) SUBSTRATE (Check ONLY Two Substrate TYPE BOXES; Estimate % percent			ē,
TYPE POOL RIFFLE POOL □ -BLDR/SLBS [10] □ -GRAVEL [7]	RIFFLE <u>SUBSTRATE ORIGIN</u> Check ONE (OR 2 & AVER/	SUBSTRATE QUALITY AGE) Check ONE (OR 2 & AVERAGE)	
🗆 🗆 -Lg BOULD [10] 👘 💭 -SAND [6]	LIMESTONE [1]	SILT: SILT HEAVY [-2]	Substrate
	TILLS [1]	-SILT MODERATE [-1]	45
	WETLANDS [0]	SILT NORMAL [0]	4."
	HARDPAN [0]	SILT FREE [1]	Max 20
	· · ·	EMBEDDED - EXTENSIVE [-2] NESS: MODERATE [-1]	
NUMBER OF SUBSTRATE TYPES: 4 or More [2]			
(High Quality Only, Score 5 or >) Z -3 or Less [0]			
	-COAL FINES [-2]		
COMMENTS:			të.
(Structure) TYPE: Score All That Occur		AMOUNT: (Check ONLY one or check 2 and AVERAGE)	Cover
O UNDERCUT BANKS [1] O POOLS > 70 cm [2]	OXBOWS, BACKWATERS [1]	-EXTENSIVE > 75% [11]	· · · · ·
OVERHANGING VEGETATION [1]	AQUATIC MACROPHYTES [1]	-MODERATE 25 - 75% [7]	B
	LOGS OR WOODY DEBRIS [1]	-SPARSE 5 - 25%.[3]	Max 20
ROOTMATS [1] COMMENTS:		-NEARLY ABSENT < 5% [1]	
3.) CHANNEL MORPHOLOGY: (Check ONLY one PER Category OR check 2 and AVER	AGE)		
SINUOSITY DEVELOPMENT CHANNELIZATION		MODIFICATIONS / OTHER	
□ -HIGH [4] □ -EXCELLENT [7] □ -NONE [6]	-HIGH [3]	-IMPOUNDMENT	Channel
	MODERATE [2]	RELOCATION -ISLAND	.5
Image: Constraint of the state of	-LOW [1]		10.5
		OREDGING BANK SHAPING ONE SIDE CHANNEL MODIFICATIONS	Max 20
COMMENTS:			
4.) RIPARIAN ZONE AND BANK EROSION (check ONE box PER bank or check 2 and A	VERAGE per bank)	River Right Looking Downstream	
RIPARIAN WIDTH FLOOD PLAIN QUALITY (PAS)		BANK EROSION	
L R (Per Bank) L R (Most Predominant Per Bank)	LR -	L R (Per Bank)	Riparian
Z/L -VERY WIDE > 100m [5] Z/Z -FOREST, SWAMP [3] □WIDE > 50m [4] □SHRUB OR OLD FIELD [2]	CONSERVATION TILLAGE		10
	URBAN OR INDUSTRIAL [0	2	
			Max 10
		[•]	
COMMENTS:			
5.) POOL / GLIDE AND RIFFLE / RUN QUALITY			
MAX. DEPTH MORPHOLOGY	CURRENT VELOCITY	(POOLS & RIFFLES!)	
Check 1 ONLY!) (Check 1 or 2 & AVERAGE)	(Check All		Pool /
□ - 1m [6] POOL WIDTH > RIFFLE WIDTH [2]	-EDDIES [1]	-TORRENTIAL [-1]	Current
- 0.7m [4] - 0.4 to 0.7m [2] - 0.4 to 0.7m [2] - 0.4 to 0.7m [2]			5
- 0.4 to 0.7m [2] - POOL WIDTH < RIFFLE WIDTH [0]	-MODERATE [1]	-INTERMITTENT [-2] -VERY FAST [1]	Max 12
□ -< 0.2m [POOL = 0]	-NONE [-1]	·	
COMMENTS:			
CHECK ONE OR CHECK 2	AND ADVERAGE		Riffle / Run
		RIFFLE / RUN EMBEDDEDNESS	sine / Null
	e.g., Cobble, Bouider) [2]	-NONE [2]	
	ABLE (e.g., Large Gravel) [1]	□ +LOW [1]	Max 8
Best Areas < 5cm [0] In Constant Consta	E (Fine Gravel, Sand) [0]	-MODERATE [0]	
-NO RIFFLE DUI RONS present [0] -NO RIFFLE / NO RUN [Metric = 0]	/	EXTENSIVE [-1]	Gradient
COMMENTS:	•		
6.) GRADIENT (ft / mi): 5.64 DRAINAGE AREA (sq.mi.): 123.67	% POOL: % GLIDE:	· .	10
Best areas must be large enough to support a population of riffle-obligate species	% RIFFLE: % RUN:	Gradient Score from Table 2 of Users Manual based on gradient and drainage area.	Max 10

,

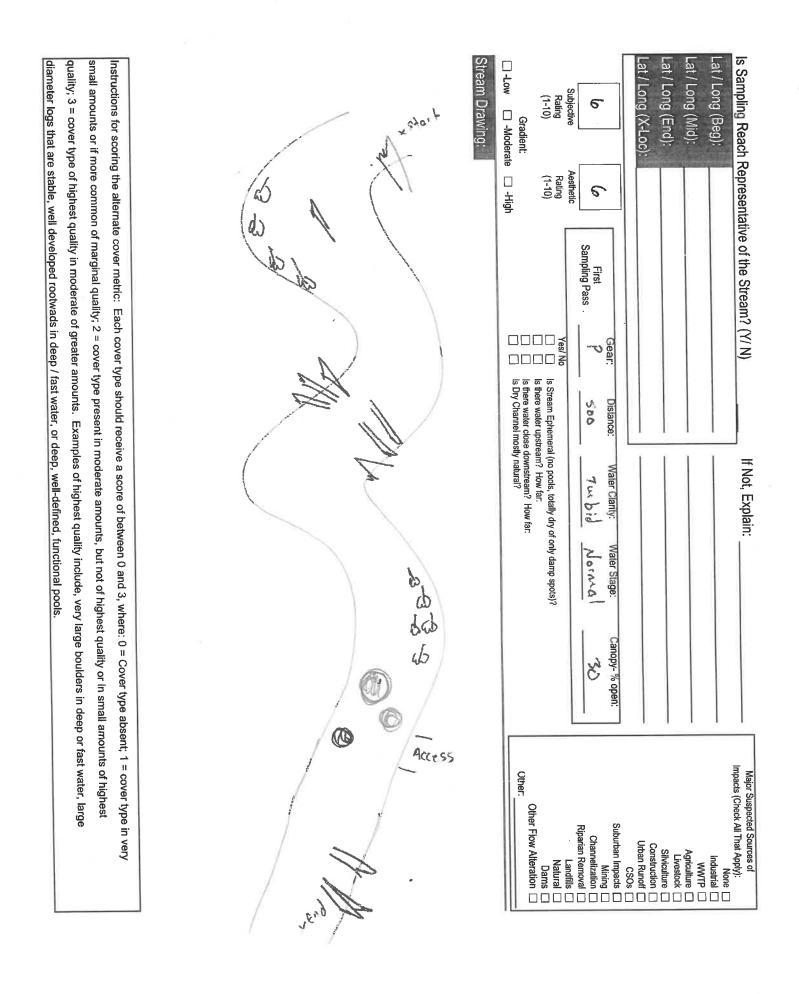


Site Code: 13-5	0 RM: 106.6		es Raines River			
	Project Code: Deww22		Dof 16-173			
Date: 6-24-2022.	Scorer: MAS	Latitude:	42.46472	Longitude:	- \$7.94289	
1.) SUBSTRATE (Check ONLY TV	wo Substrate TYPE BOXES; Estimate % pe	ercent				
TYPE POOL	L RIFFLE	POOL RI	FLE SUBSTRATE ORIGIN		SUBSTRATE QUALITY	
-BLDR/SLBS [10]	GRAVEL [7]		Check ONE (OR 2 & AVE	RAGE)	Check ONE (OR 2 & AVERAGE)	
				SILT:	SILT HEAVY [-2]	Substrat
	BEDROCK [5]		TILLS [1]	01211	SILT MODERATE [-1]	Substrat
			-WETLANDS [0]			0
-HARDPAN [4]			-HARDPAN (0)			
	Z		SANDSTONE [0]	EMBEDDE		Max 20
			RIP / RAP [0]	NESS:	-MODERATE [-1]	
NUMBER OF SUBSTRATE TYPES	S:					
(High Quality Only, Score 5 or >)	-3 or Less [0]		-SHALE [-1]			
(-COAL FINES [-2]			
COMMENTS:						•
2.) INSTREAM COVER (Give each	h cover type a score of 0 to 3; see back for	instructions)			AMOUNT: (Check ONLY one or	
(Structure)	TYPE: Score All That Occur		1		check 2 and AVERAGE)	Cover
UNDERCUT BANKS [1]	<u>3</u> POOLS > 70 cm [2] <u> </u>	OWS, BACKWATERS [1]		-EXTENSIVE > 75% [11]	
			ATIC MACROPHYTES [1]		-MODERATE 25 - 75% [7]	10
3 SHALLOWS (IN SLOW WA	ATER) [1] O BOULDERS [1]	_/LOG	S OR WOODY DEBRIS [1]		-SPARSE 5 - 25% [3]	Max 20
COMMENTS:					-NEARLY ABSENT < 5% [1]	
	Check ONLY one PER Category OR check	2 and AVERACE				
	DEVELOPMENT CHANNELIZ		STABILTIY	MODIFICAT	IONS / OTHER	
	-EXCELLENT [7] -NONE		<u>этлыстт</u> П-ӈисн [3]			01
	□ -GOOD [5] □ -RECO\		-MODERATE [2]	-RELO		Channel
		/ERING [3]	-LOW [1]		PY REMOVAL -LEVEED	4.3
-NONE [1]	Z-POOR [1] Z-RECEN	T OR NO	ℓ^{-} .	-DRED		Max 20
	RECOV	ERY [1]			DE CHANNEL MODIFICATIONS	1107 20
	🗔 -IMPÓU	NDED [-1]				
COMMENTS:						
	ROSION (check ONE box PER bank or cl		OF and the la	River R	ight Looking Downstream	
RIPARIAN WIDTH	FLOOD PLAIN QU			River R		
	L R (Most Predominant Per Bank		L R		BANK EROSION	
	-FOREST, SWAMP [3]	,	CONSERVATION TILLA	SE [1]	LR (Per Bank)	Riparian
L R (Per Bank)					-MODERATE [2]	6.25
C R (Per Bank) 			URBAN OR INDUSTRIAL			
-VERY WIDE > 100m [5]	-SHRUB OR OLD FIELD [2]		-URBAN OR INDUSTRIAL -OPEN PASTURE, ROWO			Max 10
-VERY WIDE > 100m [5] -WIDE > 50m [4]		V FIELD [1]	URBAN OR INDUSTRIAL	ROP [0]		Max 10
□ -VERY WIDE > 100m [5] □ -WIDE > 50m [4] □ -MODERATE 10 - 50m [3] □ -MODERATE 10 - 50m [3] □ -VERY NARROW 5 - 10m [2] □ -VERY NARROW < 5m [1]	-SHRUB OR OLD FIELD [2] -RESIDENTIAL, PARK, NEV -FENCED PASTURE [1]	V FIELD [1]	-OPEN PASTURE, ROWO	ROP [0]		Max 10
□ -VERY WIDE > 100m [5] □ -WIDE > 50m [4] □ -MODERATE 10 - 50m [3] □ ∠-NARROW 5 - 10m [2]	SHRUB OR OLD FIELD [2]	V FIELD [1]	-OPEN PASTURE, ROWO	ROP [0]		Max 10
□ -VERY WIDE > 100m [5] □ -WIDE > 50m [4] □ -MODERATE 10 - 50m [3] □ -MODERATE 10 - 50m [3] □ -NARROW 5 - 10m [2] □ -VERY NARROW < 5m [1] □ -NONE [0]	-SHRUB OR OLD FIELD [2] -RESIDENTIAL, PARK, NEV -FENCED PASTURE [1] COMMENTS:	V FIELD [1]	-OPEN PASTURE, ROWO	ROP [0]		Max 10
□ -VERY WIDE > 100m [5] □ -WIDE > 50m [4] □ -MODERATE 10 - 50m [3] ✓ -NARROW 5 - 10m [2] □ -VERY NARROW < 5m [1] □ -NONE [0] 5.) POOL / GLIDE AND RIFFLE / R	-SHRUB OR OLD FIELD [2] -RESIDENTIAL, PARK, NEV -FENCED PASTURE [1] COMMENTS:	V FIELD [1]	-OPEN PASTURE, ROWC -MINING / CONSTRUCTIC -MINING / CONSTRUCTIC	ROP [0] DN [0]	- HEAVY/SEVERE [1]	Max 10
□ -VERY WIDE > 100m [5] □ -WIDE > 50m [4] □ -MODERATE 10 - 50m [3] ☑ -NARROW 5 - 10m [2] □ -VERY NARROW < 5m [1] □ -NONE [0] 5.) POOL / GLIDE AND RIFFLE / R MAX. DEPTH		V FIELD [1]		ROP [0] DN [0] Y (POOLS &	- HEAVY/SEVERE [1]	Max 10
		V FIELD [1]	-OPEN PASTURE, ROWC -MINING / CONSTRUCTIO -MINING / CONSTRUCTIO -MINING / CONSTRUCTIO	P(0) P(0)	HEAVY / SEVERE [1]	Max 10
OVERY WIDE > 100m [5] OVERY WIDE > 50m [4] OVIDE > 50m [4] OVIDE > 50m [2] OVIDE > 10m [2] OVIDE NARROW 5 - 10m [2] OVIDE NONE [0] O		v Field [1]	-OPEN PASTURE, ROWC MINING / CONSTRUCTIO	Y (POOLS & VI (POOLS & VI That Apply)	RIFFLES!)	Max 10
□ -VERY WIDE > 100m [5] □ -WIDE > 50m [4] □ -MODERATE 10 - 50m [3] □ -MODERATE 10 - 50m [3] □ -VERY NARROW 5 - 10m [2] □ -VERY NARROW 5 - 10m [2] □ -VERY NARROW 5 - 10m [2] □ -NONE [0] 5.) POOL / GLIDE AND RIFFLE / R MAX. DEPTH [Check 1 ONLY1] □ - 1m [6] □ - 0.7m [4]		V FIELD [1]	-OPEN PASTURE, ROWC - MINING / CONSTRUCTIO - MINING / CONSTRUCTIO CURRENT VELOCIT (Check AEDDIES [1]FAST [1]	Y (POOLS & Y (POOLS & JI That Apply)	RIFFLES!) ENTIAL [-1]	Max 10
Overy WIDE > 100m [5] Overy WIDE > 50m [4] Overy Ove	-SHRUB OR OLD FIELD [2] -RESIDENTIAL, PARK, NEV -FENCED PASTURE [1] COMMENTS: <u>MORPHOLOGY</u> (Check 1 or 2 & AVERAGE -POOL WIDTH > RIFFLE WI -POOL WIDTH = RIFFLE WI -POOL WIDTH = RIFFLE WI -POOL WIDTH < RIFFLE WI	V FIELD [1]	-OPEN PASTURE, ROWC -MINING / CONSTRUCTIO -MINING / CONSTRUCTIO -MINING / CONSTRUCTIO -MODES [1] -FAST [1] -MODERATE [1]	ROP [0] DN [0] Y (POOLS & JI That Apply) TORRI -INTER -INTER	RIFFLES!) ENTIAL [-1] MITTENT [-2]	Pool / Current
O - VERY WIDE > 100m [5] O - WIDE > 50m [4] O - MODERATE 10 - 50m [3] O - NONE [0] O - VERY NARROW < 5m [1] O - VERY NARROW < 5m [1] O - NONE [0] O - NONE [0] O - NONE [0] O - 1m [6] O - 0.7m [4] O - 0.2 to 0.4m [1] O - 2 to 0.4m [1]		V FIELD [1]	- OPEN PASTURE, ROWC - MINING / CONSTRUCTIO - MINING / CONSTRUCTIO (Check AEDDIES [1]FAST [1]MODERATE [1]SLOW [1]SLOW [1]SLOW [1]SLOW [1]SLOW [1]SLOW [1]SLOW [1]	Y (POOLS & Y (POOLS & JI That Apply)	RIFFLES!) ENTIAL [-1] MITTENT [-2]	Pool / Current
□ -VERY WIDE > 100m [5] □ -WIDE > 50m [4] □ -MODERATE 10 - 50m [3] □ -MODERATE 10 - 50m [3] □ -VERY NARROW 5 - 10m [2] □ -VERY NARROW 5 - 10m [2] □ -NONE [0] 5.) POOL / GLIDE AND RIFFLE / R MAX. DEPTH [Check 1 ONLY]] □ - 1m [6] □ -0.7m [4] □ - 0.4 to 0.7m [2]	-SHRUB OR OLD FIELD [2] -RESIDENTIAL, PARK, NEV -FENCED PASTURE [1] COMMENTS: <u>MORPHOLOGY</u> (Check 1 or 2 & AVERAGE -POOL WIDTH > RIFFLE WI -POOL WIDTH = RIFFLE WI -POOL WIDTH = RIFFLE WI -POOL WIDTH < RIFFLE WI	V FIELD [1]	-OPEN PASTURE, ROWC -MINING / CONSTRUCTIO -MINING / CONSTRUCTIO -MINING / CONSTRUCTIO -MODES [1] -FAST [1] -MODERATE [1]	ROP [0] DN [0] Y (POOLS & JI That Apply) TORRI -INTER -INTER	RIFFLES!) ENTIAL [-1] MITTENT [-2]	Pool / Current
□ -VERY WIDE > 100m [5] □ -WIDE > 50m [4] □ -MODERATE 10 - 50m [3] □ -NARROW 5 - 10m [2] □ -VERY NARROW 5 - 10m [2] □ -VERY NARROW 5 - 10m [2] □ -NONE [0] 5.) POOL / GLIDE AND RIFFLE / R MAX. DEPTH Check 1 ONL YI □ - 0.7m [4] □ - 0.2 to 0.4m [1] □ - < 0.2m [POOL = 0]	-SHRUB OR OLD FIELD [2] -RESIDENTIAL, PARK, NEV -FENCED PASTURE [1] COMMENTS: <u>MORPHOLOGY</u> (Check 1 or 2 & AVERAGE -POOL WIDTH > RIFFLE WI -POOL WIDTH = RIFFLE WI -POOL WIDTH = RIFFLE WI -POOL WIDTH < RIFFLE WI	V FIELD [1]	- OPEN PASTURE, ROWC - MINING / CONSTRUCTIO - MINING / CONSTRUCTIO (Check AEDDIES [1]FAST [1]MODERATE [1]SLOW [1]SLOW [1]SLOW [1]SLOW [1]SLOW [1]SLOW [1]SLOW [1]	ROP [0] DN [0] Y (POOLS & JI That Apply) TORRI -INTER -INTER	RIFFLES!) ENTIAL [-1] MITTENT [-2]	Pool / Current
□ -VERY WIDE > 100m [5] □ -WIDE > 50m [4] □ -MODERATE 10 - 50m [3] □ -NARROW 5 - 10m [2] □ -VERY NARROW 5 - 10m [2] □ -VERY NARROW 5 - 10m [2] □ -NONE [0] 5.) POOL / GLIDE AND RIFFLE / R MAX. DEPTH Check 1 ONL YI □ - 0.7m [4] □ - 0.2 to 0.4m [1] □ - < 0.2m [POOL = 0]		V FIELD [1]	-OPEN PASTURE, ROWC -MINING / CONSTRUCTIO -MINING / CONSTRUCTIO (Check A -EDDIES [1] -FAST [1] -FAST [1] -SLOW [1] -NONE [-1]	ROP [0] DN [0] Y (POOLS & JI That Apply) TORRI -INTER -INTER	RIFFLES!) ENTIAL [-1] MITTENT [-2]	Pool / Current
□ -VERY WIDE > 100m [5] □ -WIDE > 50m [4] □ -MODERATE 10 - 50m [3] □ -NARROW 5 - 10m [2] □ -VERY NARROW 5 - 10m [2] □ -VERY NARROW 5 - 10m [2] □ -NONE [0] 5.) POOL / GLIDE AND RIFFLE / R MAX. DEPTH (Check 1 ONLY1) □ - 0.7m [4] □ - 0.7m [2] □ - 0.2 to 0.4m [1] □ - < 0.2m [POOL = 0)	-SHRUB OR OLD FIELD [2] -RESIDENTIAL, PARK, NEV -FENCED PASTURE [1] COMMENTS: MORPHOLOGY (Check 1 or 2 & AVERAGE -POOL WIDTH > RIFFLE WI -POOL WIDTH > RIFFLE WI -POOL WIDTH = RIFFLE WI -POOL WIDTH < RIFFLE WI -IMPOUNDED [-1] CHECK ONE C RUN DEPTH	V FIELD [1] DTH [2] DTH [1] DTH [0] RIFFLE / RUN	-OPEN PASTURE, ROWC - MINING / CONSTRUCTIO CURRENT VELOCIT (Check A - EDDIES [1] - FAST [1] - MODERATE [1] - SLOW [1] - NONE [-1] ADVERAGE SUBSTRATE	ROP [0] DN [0] Y (POOLS & ull That Apply) TORRI -INTER -INTER -INTER -VERY'	RIFFLES!) ENTIAL [-1] MITTENT [-2]	Pool / Current Max 12 Riffle / Ru
□ -VERY WIDE > 100m [5] □ -WIDE > 50m [4] □ -MODERATE 10 - 50m [3] □ -MODERATE 10 - 50m [2] □ -NARROW 5 - 10m [2] □ -VERY NARROW < 5m [1]	-SHRUB OR OLD FIELD [2] -RESIDENTIAL, PARK, NEV -FENCED PASTURE [1] COMMENTS: MORPHOLOGY (Check 1 or 2 & AVERAGE -POOL WIDTH > RIFFLE WI -POOL WIDTH > RIFFLE WI -POOL WIDTH = RIFFLE WI -POOL WIDTH = RIFFLE WI -OOL WIDTH = RIFFLE WI -OOL WIDTH = RIFFLE WI -OOL WIDTH = RIFFLE WI -POOL WIDTH = RIFFLE WI -MAPOUNDED [-1] -MAX > 50 cm [2]	V FIELD [1])) DTH [2] DTH [1] DTH [0]) R CHECK 2 AND RIFFLE / RUN] -STABLE (e.g.,	CURRENT VELOCIT (Check A - MINING / CONSTRUCTIO (Check A - EDDIES [1] - FAST [1] - MODERATE [1] - SLOW [1] - NONE [-1] - ADVERAGE SUBSTRATE Cobble, Boulder) [2]	ROP [0] DN [0] Y (POOLS & JI That Apply) TORRI -INTER -INTER -INTER RIFFLE / RU -NONE		Pool / Current Max 12
□ -VERY WIDE > 100m [5] □ -WIDE > 50m [4] □ -MODERATE 10 - 50m [3] □ -NORERATE 10 - 50m [3] □ -NARROW 5 - 10m [2] □ -VERY NARROW 5 - 10m [6] MAX. DEPTH (Check 1 ONLY1) □ - 0.7m [4] □ - 0.7m [4] □ - 0.2m [POOL = 0] COMMENTS:		V FIELD [1] DTH [2] DTH [2] DTH [1] DTH [0] PR CHECK 2 AND RIFFLE / RUN -STABLE (e.g., -MOD. STABLE	CURRENT VELOCITI CURRENT VELOCITI (Check A -EDDIES [1] -FAST [1] -FAST [1] -SLOW [1] -NONE [-1] ADVERAGE SUBSTRATE Cobble, Boulder) [2] (e.g., Large Gravel) [1]	ROP [0] DN [0] Y (POOLS & UI That Apply) TORRI INTER INTER INTER VERY RIFFLE / RU		Pool / Current Max 12 Riffle / Ru
□ -VERY WIDE > 100m [5] □ -WIDE > 50m [4] □ -MODERATE 10 - 50m [3] □ -MODERATE 10 - 50m [2] □ -VERY NARROW 5 - 10m [2] □ -NONE [0] 5.) POOL / GLIDE AND RIFFLE / R MAX. DEPTH (Check 1 ONLY1) □ - 0.7m [4] □ - 0.7m [2] □ - 0.2 to 0.4m [1] □ - 0.2m [POOL = 0] COMMENTS:		V FIELD [1] DTH [2] DTH [2] DTH [1] DTH [0] PR CHECK 2 AND RIFFLE / RUN -STABLE (e.g., -MOD. STABLE	CURRENT VELOCIT (Check A - MINING / CONSTRUCTIO (Check A - EDDIES [1] - FAST [1] FAST [1] MODERATE [1] - SLOW [1] - NONE [-1] - ADVERAGE SUBSTRATE Cobble, Boulder) [2]	ROP [0] >N [0] >N [0]		Pool / Current Max 12 Max 12
□ -VERY WIDE > 100m [5] □ -WIDE > 50m [4] □ -MODERATE 10 - 50m [3] □ -MODERATE 10 - 50m [2] □ -VERY NARROW 5 - 10m [7] □ -NONE [0] 5.) POOL / GLIDE AND RIFFLE / R MAX. DEPTH (Check 1 ONLY1) □ - 0.7m [4] □ - 0.7m [2] □ - 0.2 to 0.4m [1] □ - 8est Areas > 10cm [2] □ -Best Areas > 10cm [2] □ -Best Areas < 5cm [0]	□ -SHRUB OR OLD FIELD [2] □ -RESIDENTIAL, PARK, NEV □ -FENCED PASTURE [1] COMMENTS:	V FIELD [1] DTH [2] DTH [2] DTH [1] DTH [0] PR CHECK 2 AND RIFFLE / RUN -STABLE (e.g., -MOD. STABLE	CURRENT VELOCITI CURRENT VELOCITI (Check A -EDDIES [1] -FAST [1] -FAST [1] -SLOW [1] -NONE [-1] ADVERAGE SUBSTRATE Cobble, Boulder) [2] (e.g., Large Gravel) [1]	ROP [0] >N [0] >N [0]		Pool / Current Max 12 Max 12
□ -VERY WIDE > 100m [5] □ -WIDE > 50m [4] □ -MODERATE 10 - 50m [3] □ -NORERATE 10 - 50m [2] □ -VERY NARROW 5 - 10m [7] □ -NONE [0] 5.) POOL / GLIDE AND RIFFLE / R MAX. DEPTH (Check 1 ONLY]) □ - 0.1 m [6] □ - 0.7m [4] □ - 0.2 to 0.4m [1] □ - 8est Areas > 10cm [2] □ -Best Areas > 10cm [2] □ -Best Areas < 5cm [0]	□ -SHRUB OR OLD FIELD [2] □ -RESIDENTIAL, PARK, NEV □ -FENCED PASTURE [1] COMMENTS:	V FIELD [1] DTH [2] DTH [2] DTH [1] DTH [0] PR CHECK 2 AND RIFFLE / RUN -STABLE (e.g., -MOD. STABLE	CURRENT VELOCITI CURRENT VELOCITI (Check A -EDDIES [1] -FAST [1] -FAST [1] -SLOW [1] -NONE [-1] ADVERAGE SUBSTRATE Cobble, Boulder) [2] (e.g., Large Gravel) [1]	ROP [0] >N [0] >N [0]		Pool / Current Max 12 Max 12 Riffle / Rui
□ -VERY WIDE > 100m [5] □ -WIDE > 50m [4] □ -MODERATE 10 - 50m [3] □ -NARROW 5 - 10m [2] □ -VERY NARROW < 5m [1]	□ -SHRUB OR OLD FIELD [2] □ -RESIDENTIAL, PARK, NEV □ -FENCED PASTURE [1] COMMENTS:	V FIELD [1])) DTH [2] DTH [1] DTH [0]) REFELE / RUN] -STABLE (e.g.,] -MOD. STABLE (FI	CURRENT VELOCITI CURRENT VELOCITI (Check A -EDDIES [1] -FAST [1] -FAST [1] -SLOW [1] -NONE [-1] ADVERAGE SUBSTRATE Cobble, Boulder) [2] (e.g., Large Gravel) [1]	ROP [0] >N [0] >N [0]		Pool / Current Max 12 Max 12 Riffle / Rui

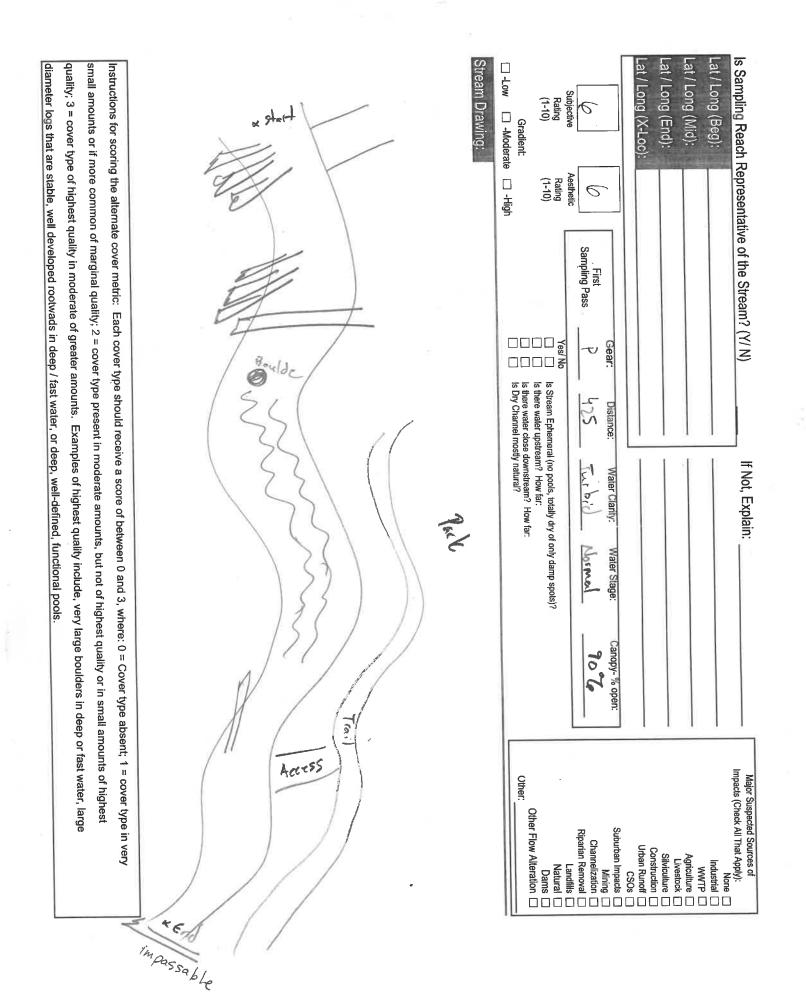

ж **;**


EVE Biodiversity	Qualitative	Habita	it Evaluat	tion Index F	Field Sh	eet	QHEI Score:	40
River Code: 95-656	RM: 102.9	Stream:	Nes P	laines R.	iver -			
Site Code: 13-4	Project Code: DLWW22	Location:	Last. 1	Jadswor	th Rd			6
Date: 4-24-2022	Scorer: MAS	Latitude:	42.428	14	Longitude:	-87,92982		2
And the second sec		5 1						
	Substrate TYPE BOXES; Estimate % perc							
TYPE POOL	RIFFLE	POOL		STRATE ORIGIN		SUBSTRATE QUALITY		
-BLDR/SLBS [10]	🖂 🗔 -GRAVEL [7]		Chec	* ONE (OR 2 & AVE	RAGE)	Check ONE (OR 2 & AVERAGE))	
	🗆 🖂 -SAND [6]			-LIMESTONE [1]	SILT:	-SILT HEAVY [-2]		Substrate
-BOULDER [9]	BEDROCK [5]			-TILLS [1]		-SILT MODERATE [-1]		
				WETLANDS [0]				0
□ □ -HARDPAN [4]				-HARDPAN [0]				
	C - SILT [2]							Max 20
		·		-SANDSTONE [0]		-EXTENSIVE [-2]		
				-RIP / RAP [0]	NESS:	-MODERATE [-1]		
NUMBER OF SUBSTRATE TYPES:	-4 or More [2]			-LACUSTRINE [0]		-NORMAL [0]		
(High Quality Only, Score 5 or >)	-3 or Less [0]			-SHALE [-1]		-NONE [1]		
	2			-COAL FINES [-2]				
COMMENTS:								
	ver type a score of 0 to 3; see back for in:	structions)				AMOUNT: (Check ONLY o	ne or	
(Structure)	TYPE: Score All That Occur					check 2 and AVERAGE)		Cover
UNDERCUT BANKS [1]	POOLS > 70 cm [2]		XBOWS, BACKV	VATERS [1]	~	EXTENSIVE > 75% [11]		1
OVERHANGING VEGETATIO		<u>_3</u> _A	QUATIC MACRO	PHYTES [1]		-MODERATE 25 - 75% [7]		15
3 SHALLOWS (IN SLOW WATE	R) [1] O BOULDERS [1]	<u> </u>	OGS OR WOOD	/ DEBRIS [1]		-SPARSE 5 - 25% [3]		Max 20
ROOTMATS [1]						-NEARLY ABSENT < 5% [1]	
COMMENTS:								
3.) CHANNEL MORPHOLOGY: (Cher	ck ONLY one PER Category OR check 2	and AVERA	GE)					2 (C
SINUOSITY DEV	ELOPMENT CHANNELIZAT	ION	STABILTIY		MODIFICATI	ONS / OTHER		
🗔 -HIGH [4]	-EXCELLENT [7] -NONE [6]		🗔 -HIGI	H [3]	-SNAGO	BING -MPOUND	MENT	Channel
-MODERATE [3]	-GOOD [5] -RECOVE	RED [4]	⊠-MOI	DERATE [2]	-RELOC			
-LOW [2]	-FAIR [3] -RECOVE	RING [3]	-LOW	-		Y REMOVALLEVEED		6
	-POOR [1] Z -RECENT				-DREDG		APING	Max 20
,	RECOVER					DE CHANNEL MODIFICATIONS		
COMMENTS:		• •						
						ы		
4.) RIPARIAN ZONE AND BANK ERO	SION (check ONE box PER bank or che	ck 2 and AVI	ERAGE per bank)		🖗 River Ri	ght Looking Downstream		
RIPARIAN WIDTH	FLOOD PLAIN QUAL	ITY PAST 1	100 Meter RIPARI	AN)	£	BANK EROSION		
L R (Per Bank)	L R (Most Predominant Per Bank)		LR			L R (Per Bank)		Riparian
-VERY WIDE > 100m [5]	-FOREST, SWAMP [3]			ISERVATION TILLAG	E [1]	-NONE / LITTLE [31	
	-SHRUB OR OLD FIELD [2]			AN OR INDUSTRIAL		-MODERATE [2]	-1	
		FIELD [1]		N PASTURE, ROWC			E [1]	Max 10
-NARROW 5 - 10m [2]	-FENCED PASTURE [1]			NG / CONSTRUCTIO			- [·]	MIGA TU
	COMMENTS:							
					_			
5.) POOL / GLIDE AND RIFFLE / RUN	QUALITY							
MAX. DEPTH	MORPHOLOGY			CURRENT VELOCIT	V (POOLS & F			
(Check 1 ONLY!)	(Check 1 or 2 & AVERAGE)				li That Apply)	AIL LEON		Devil (
- 1m [6]	-POOL WIDTH > RIFFLE WID	TH [2]		-EDDIES [1]		NTIAL (4)		Pool /
- 0.7m [4]		••		-EDDIES [1]				Current
- 0.4 to 0.7m [2]	-POOL WIDTH = RIFFLE WID	(+ •						E
- 0.2 to 0.4m [1]	-POOL WIDTH < RIFFLE WID	in [v]		-MODERATE [1]				
				-SLOW [1]	C -VERY F	AST [1]		Max 12
-< 0.2m [POOL = 0]				-NONE [-1]				
COMMENTS:								
RIFFLE DEPTH	RUN DEPTH							Riffle / Run
-*Best Areas > 10cm [2]			UN SUBSTRATE			V EMBEDDEDNESS		$ \cap $
Best Areas 5 - 10cm [1]			.g., Cobble, Bould				<i></i>	
-Best Areas 5 - Tocm [1]	··· _		BLE (e.g., Large (E (Eine Group) So	,		•		Max 8
		-UNG I ABLE	E (Fine Gravel, Sa	na) [0]				0
NO RIFFLE but RUNS presen					-EXTEN	91AE [-]]		Gradient
COMMENTS:	- 0]							
1110	DRAINAGE AREA (sg.mi.): 145.5	5						10
· · · · · · · · · · · · · · · · · · ·			% POOL:	% GLIDE		Condiant Source to	om Table 2 of Users Manual	1V
*Best areas must be large enough to support a	population of riffle-obligate species		% RIFFLE:	% RUN	1:	based on gradien	t and drainage area,	Max 10

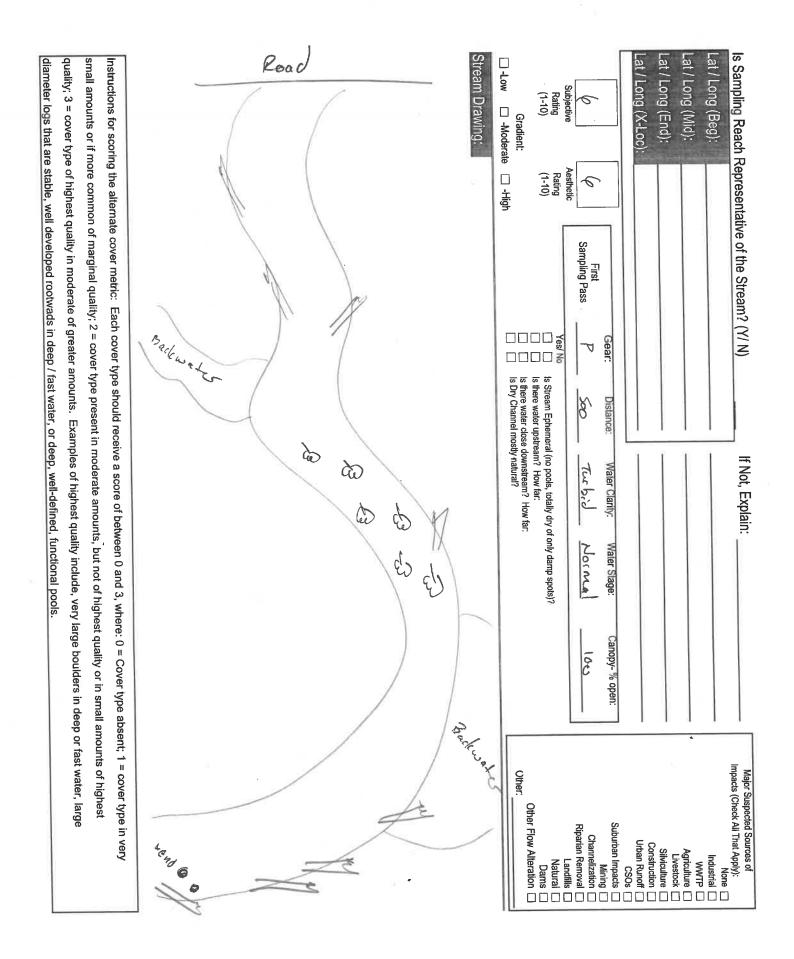
iver Code:	95-65		19.72	Stream:	Des Plai	nes River			
ite Code: ate: C	13-18-	Project Code: Scorer:	Deww: MAC	Z7 Location Latitude:		IRI RIPIE	l e stades	5 2 8 5 9 7 8 -	
					46,4010	10	Longitude:		
		wo Substrate TYPE E	BOXES; Estimate						
	POC			POOL		STRATE ORIGIN		SUBSTRATE QUALITY	
			GRAVEL [7]	\rightarrow		ck ONE (OR 2 & AVI		Check ONE (OR 2 & AVERAGE)	
			-SAND [6]			-LIMESTONE [1]	SILT:	SILT HEAVY [-2]	Subs
			-BEDROCK [5]			-TILLS [1]		SILT MODERATE [-1]	r
] [] -Cobe] [] -Hare					k			SILT NORMAL [0]	(
j ⊡ •⊓∧rci j DX{muci			☐ -ARTIFICIAL [(]] -SILT [2]	/j					Max
			_] -SIL1 [2]	-	·	-SANDSTONE [0] -RIP / RAP [0]	NESS:	-EXTENSIVE [-2]	
JMBER OF S	UBSTRATE TYPE	S: `	-4 or More [2]			-LACUSTRINE [0]	NLOO.		
	inly, Score 5 or >)	 X				-SHALE [-1]			
.g			1 0 01 2000 [0]			-COAL FINES [-2]			
DMMENTS:					·	-00AE INEO [2]			
		h cover type a score						AMOUNT: (Check ONLY one or	
<u></u>	tructure)	TYPE	Score All That O	~				check 2 and AVERAGE)	Co
	RCUT BANKS [1] HANGING VEGET/		POOLS > 70 cr ROOTWADS [1	1.	OXBOWS, BACK	•••		-EXTENSIVE > 75% [11]	, é
	OWS (IN SLOW W	1078.0	BOULDERS [1]		LOGS OR WOOD	• •		-MODERATE 25 - 75% [7]	
	MATS [1]	- 919 - V			2000 UN WOOD				Max
MMENTS:									
		Check ONLY one PE	R Category OR ch	eck 2 and AVER	AGE)				
		DEVELOPMENT		LIZATION	STABILTI	Ĺ	MODIFICATI	IONS / OTHER	
	••	-EXCELLENT [7]			🗖 -Hig		-SNAG0		Cha
-MODE		-GOOD [5]		COVERED [4]	1. 1	DERATE [2]	-RELOC		
A//2				COVERING [3]	X-101	N [1]		PY REMOVAL -LEVEED	2.
-NONE	. [1]	🗙 -POOR [1]	6	CENT OR NO					Max
				POUNDED [-1]			I-UNE SI	IDE CHANNEL MODIFICATIONS	
OMMENTS:			<u></u>	[-]					
DIDADIAN		BOSION (shade ON					A	ight Looking Downstream	
PARIAN WID		EROSION (check ON			100 Meter RIPAR	,	Pr River Ri		
R (Per Ba		LR (Most	Predominant Per I		L R	inda I		BANK EROSION L R (Per Bank)	Dine
	WIDE > 100m [5]		EST, SWAMP [3]	Janny		NSERVATION TILLA	GE [1]		Ripa
		1 1/2	JB OR OLD FIELD	[2]		BAN OR INDUSTRIA		-MODERATE [2]	٩.
MODE	RATE 10 - 50m [3]		DENTIAL, PARK,			EN PASTURE, ROW			Max
	OW 5 - 10m [2]		ED PASTURE [1]			ING / CONSTRUCT			101024
Î 🗇 -VERY	NARROW < 5m [1]								
-NONE	[0]	COMMENTS:							
POOL/GU	DE AND RIFFLE /								
X. DEPTH		tert mornell (MORPHOLOGY			CURRENT VELOCI	TY (POOLS &	RIFFLESI)	
eck 1 ONLY		(Che	ck 1 or 2 & AVER/	AGE)			All That Apply)		Poe
🕰 - 1m [6]			WIDTH > RIFFLE			-EDDIES [1]	-TORRE	ENTIAL [-1]	Сил
🗀 - 0.7m (4]	·	. WIDTH = RIFFLE	• •		-FAST [1]			
🔲 - 0.4 to		\	WIDTH < RIFFLE	E WIDTH [0]		-MODERATE [1]			5
- 0.2 to		🔀 -імро	UNDED [-1])-sLow [1]		FAST [1]	Max
	n [POOL = 0}				X	-NONE [-1]			
MMENTS:					/				
			CHECK ON	E OR CHECK 2	AND ADVERAGE		*******		D:00
FLE DEPTH		RUN DEPT			RUN SUBSTRATE			N EMBEDDEDNESS	Riffle /
_	reas > 10cm [2]	- MAX			e.g., Cobble, Boul				10
	reas 5 - 10cm [1]				ABLE (e.g., Large				Max
	reas < 5cm [0]		• •		E (Fine Gravel, Sa		-MODEF	•	INICA
	FLE but RUNS pre								Grad
	FLE / NO RUN [M	etric = 0]							_
-		1							C A
MMÈNTS:	(ft/mi): 2.6.	3 DRAINAGE ARE	EA (sq.mi.): 212	2.87	% POOL:	% GLID	E:	Gradient Score from Table 2 of Users	- 8



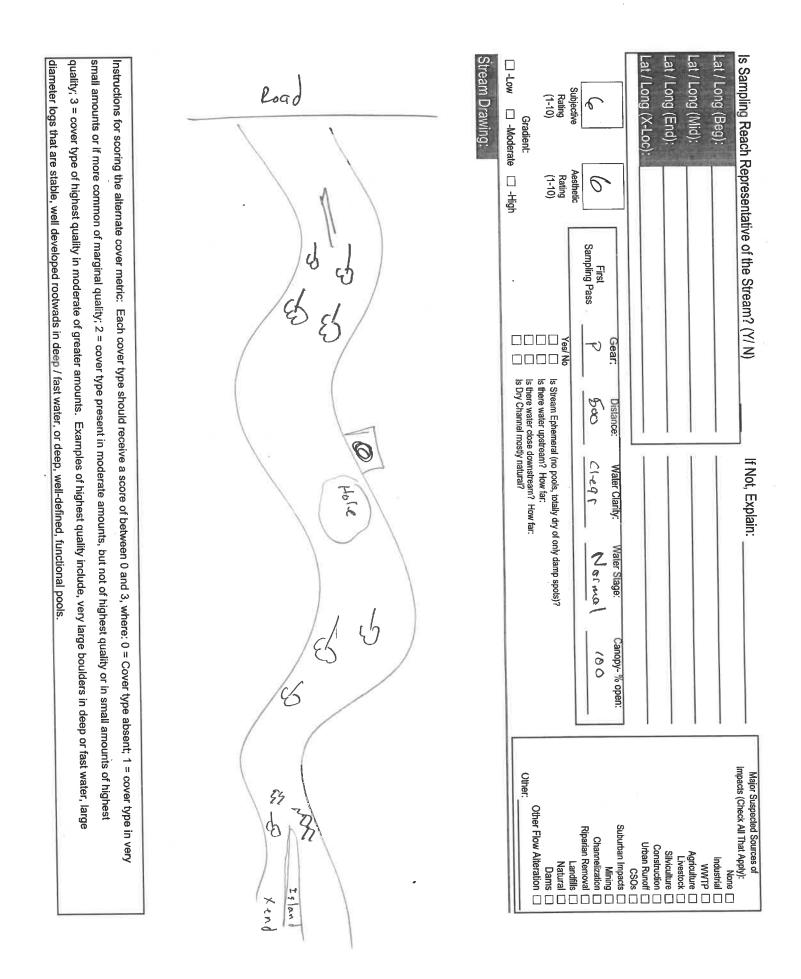
QUALITY QUALITY QUALITY QUALITY QUALITY AND A CONTRACT OF	ore: 14.75
River Code: 95-656 RM: 99.30 Stream: Dis Plaines River	
Ste Code: 13-19 Project Code: DLWW22 Location: Pat, W21 Rithe	
Date: 10-25-2027 Scorer: M4S Latitude: 42,39416 Longitude: -87,92359	
1.) SUBSTRATE (Check ONLY Two Substrate TYPE BOXES; Estimate % percent	
Check ONE (OR 2 & AVERAGE) Check ONE (OR 2 & AVERAGE) Check ONE (OR 2 & AVERAGE)	
	Substrate
	(
	14
-HARDPAN [4] -ARTIFICIAL [0] -HARDPAN [0] -SILT FREE [1]	Max 20
	max 20
NUMBER OF SUBSTRATE TYPES: A or More [2] -LACUSTRINE [0] NORMAL [0]	
(High Quality Only, Score 5 or >)	
COMMENTS: COAL FINES [-2]	
2.) INSTREAM COVER (Give each cover type a score of 0 to 3; see back for instructions) AMOUNT: (Check ONLY one or	
(Structure) TYEE: Score All That Occur check 2 and AVERAGE)	Cover
UNDERCUT BANKS [1]	1
/ OVERHANGING VEGETATION [1] / ROOTWADS [1] / AQUATIC MACROPHYTES [1]	17
2 SHALLOWS (IN SLOW WATER) [1] / BOULDERS [1] 3 LOGS OR WOODY DEBRIS [1] SPARSE 5 - 25% [3]	Max 20
	WIGA ZU
COMMENTS:	
3.) CHANNEL MORPHOLOGY: (Check ONLY one PER Category OR check 2 and AVERAGE)	
SINUOSITY DEVELOPMENT CHANNELIZATION STABILITY MODIFICATIONS / OTHER	
HIGH [4] -EXCELLENT [7] -NONE [6] -HIGH [3] -SNAGGING -IMPOUNDMENT	Channe
	Gianne
-LOW [2] -FAIR [3] -RECOVERING [3] -LOW [1] -CANOPY REMOVAL -LEVEED	13
-NONE [1] -POOR [1] -RECENT OR NO -DREDGING -BANK SHAPING	Max 20
RECOVERY [1]	IVIAX ZU
COMMENTS:	
4.) RIPARIAN ZONE AND BANK EROSION (check ONE box PER bank or check 2 and AVERAGE per bank)	
RIPARIAN WIDTH FLOOD PLAIN QUALITY (PAST 100 Meter RIPARIAN) BANK EROSION	
L R (Per Bank) L R (Most Predominant Per Bank) L R L R (Per Bank)	Riparian
C -VERY WIDE > 100m [5] C -FOREST, SWAMP [3] -CONSERVATION TILLAGE [1] -ONNE / LITTLE [3]	
⁷ □ Ø -WIDE > 50m [4] □ □ -SHRUB OR OLD FIELD [2] □ Ø -URBAN OR INDUSTRIAL [0] - JODERATE [2]	8.15
-MODERATE 10 - 50m [3] - RESIDENTIAL, PARK, NEW FIELD [1] - OPEN PASTURE, ROWCROP [0] - HEAVY / SEVERE [1]	Max 10
-NARROW 5 - 10m [2] -FENCED PASTURE [1] -MINING / CONSTRUCTION [0]	INGA TO
ONDE [0] COMMENTS:	
5.) POOL / GLIDE AND RIFFLE / RUN QUALITY	
MAX, DEPTH MORPHOLOGY CURRENT VELOCITY (POOLS & RIFFLES!)	Ð
(Check 1 or 2 & AVERAGE) (Check All That Apply)	Pool /
- 1m [6] POOL WIDTH > RIFFLE WIDTH [2] EDDIES [1] TORRENTIAL [-1]	Current
-0.7m [4] -POOL WIDTH = RIFFLE WIDTH [1] -FAST [1] -INTERSTITIAL [-1]	
- 0.4 to 0.7m [2] - POOL WIDTH < RIFFLE WIDTH [0] -INTERMITTENT [-2]	D
□ - 0.2 to 0.4m [1] □ -IMPOUNDED [-1] □ -VERY FAST [1]	Max 12
□ -< 0.2m [POOL = 0} □ -NONE [-1]	
COMMENTS:	
CHECK ONE OR CHECK 2 AND ADVERAGE	Riffle / Ru
RIFFLE / RUN DEPTH RIFFLE / RUN SUBSTRATE RIFFLE / RUN EMBEDDEDNESS	1
-*Best Areas > 10cm [2] - MAX > 50 cm [2] - STABLE (e.g., Cobble, Boulder) [2] -NONE [2]	H
Areas 5 - 10cm [1] - MAX < 50 cm [1] - MOD. STABLE (e.g., Large Gravei) [1] -LOW [1]	Max 8
-Best Areas < 5cm [0] . UNSTABLE (Fine Gravel, Sand) [0] . MODERATE [0]	
-NO RIFFLE but RUNS present [0] EXTENSIVE [-1]	Gradient
-NO RIFFLE / NO RUN [Metric = 0]	
COMMENTS:	
6.) GRADIENT (ft / mi): 2.63 DRAINAGE AREA (sq.mi.): 2/3.17 % POOL: % GLIDE:	- 8
Gradier Score from Table 2 of Leoren	
*Best areas must be large enough to support a population of tittle-obligate species % RIFFLE: % RUN: Caradient score than Table 20 (Jess 1	Max 10



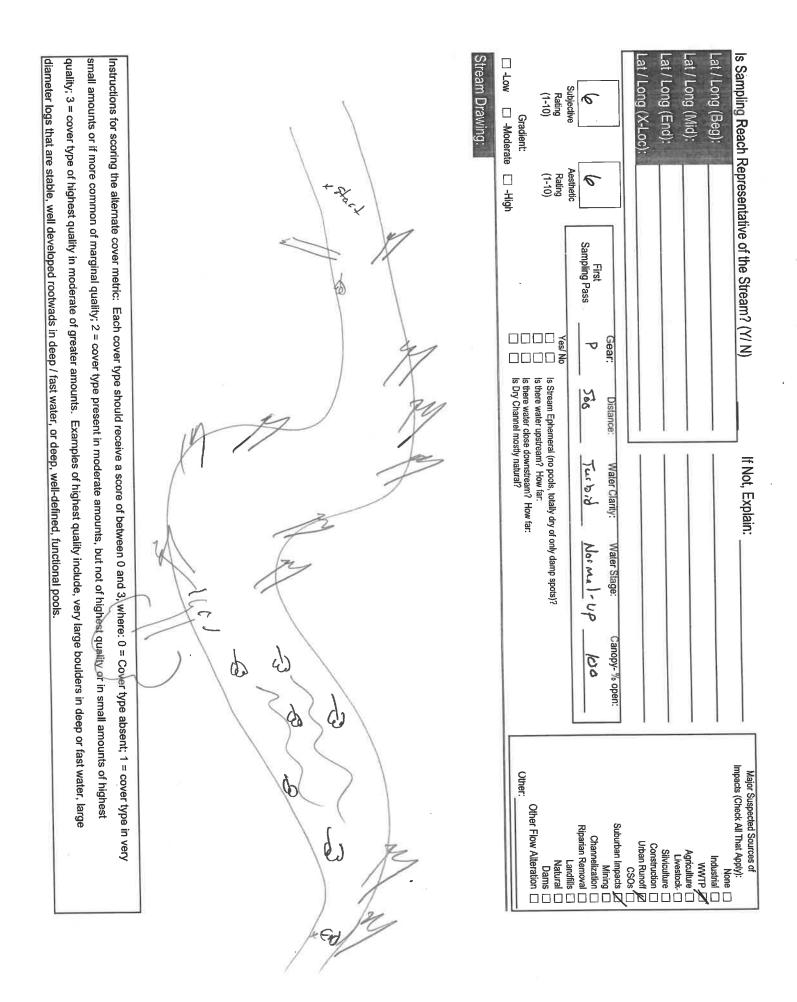
W M M	^{ity} Qualitative	Habitat E	valuation Index	Field Sh	eet QHEI So	ore: 12.1
River Code: 95-656		Stream:	to Plaines Liv	·cr		
Site Code: 13-3	Project Code: Deww 22		Unt US-41			
Date: 6-25-2022	Scorer: MAAS	Latitude:	2.38323	Longitude:	-87.91466	
.) SUBSTRATE (Check ONLY Tw	vo Substrate TYPE BOXES; Estimate % pe	rcent				
TYPE POOL		POOL RIFF	LE SUBSTRATE ORIGIN		SUBSTRATE QUALITY	
	🖸 🗹 -GRAVEL [7]	×	Check ONE (OR 2 & AV			
· ·					Check ONE (OR 2 & AVERAGE)	
Clig BOULD [10]		<u></u>		SILT:	SILT HEAVY [-2]	Substrat
			[7 -TILLS [1]		SILT MODERATE [-1]	1.6
🗀 🗔 -COBBLE [8] 🛛 📈 🏹	🗁 🛄 -DETRITUS [3]	<u>×</u>	WETLANDS [0]		-SILT NORMAL [0]	15
🗌 🗋 -HARDPAN [4] 💦 🕺	🗆 🗔 -ARTIFICIAL [0]		HARDPAN [0]		SILT FREE [1]	Max 20
🗌 🗌 -MUCK [2] 🛛 🔜 🔜	🗌 🗋 -SILT [2]	×	-SANDSTONE [0]	EMBEDDED		
	-		-RIP / RAP [0]	NESS:	-MODERATE [-1]	
UMBER OF SUBSTRATE TYPES	: 4 or More [2]		-LACUSTRINE [0]			
High Quality Only, Score 5 or >)	-3 or Less [0]					
ingh duality chily, ocord o or - y						
OMMENTS:			COAL FINES [-2]			
	cover type a score of 0 to 3; see back for	instructions)			AMOUNT: (Check ONLY one or	
(Structure)	TYPE: Score All That Occur	non uonono)			check 2 and AVERAGE)	0
UNDERCUT BANKS [1]	POOLS > 70 cm [2]		WS, BACKWATERS [1]		-EXTENSIVE > 75% [11]	Cover
OVERHANGING VEGETA			TIC MACROPHYTES [1]		MODERATE 25 - 75% [7]	10
3 SHALLOWS (IN SLOW WA			OR WOODY DEBRIS [1]		-SPARSE 5 - 25% [3]	
2-ROOTMATS [1]			on noor promotil		-SPARSE 5 - 25% [3]	Max 2
COMMENTS:					TICALLI ADOENI < 3% [1]	
	heck ONLY one PER Category OR check	2 and AV/ERACE				
	DEVELOPMENT CHANNELIZA		STABILTIY		ONS / OTHER	
	□ -CKOELLENT [/] □ -NONE [□ -GOOD [5]		-HIGH [3]			Chann
				-RELOC		12
		ERING [3]	🗌 -LOW [1]		PY REMOVAL -LEVEED	L
	•••			-DREDG		Max 20
	RECOVE			L_J-ONE SI	DE CHANNEL MODIFICATIONS	
OMMENTS:		יטבט [-1]				
RIPARIAN ZONE AND BANK F	ROSION (check ONE box PER bank or ch	erk 2 and AVERAC	E ner hank)	River Ri	ght Looking Downstream	
IPARIAN WIDTH	FLOOD PLAIN QUA			B. HINGING	BANK EROSION	
L R (Per Bank)	L R (Most Predominant Per Bank		R			D :
	Z -FOREST, SWAMP [3]			CE IU	L R (Per Bank)	Riparia
☑WIDE > 50m [4]						8.15
						0.
					-HEAVY / SEVERE [1]	Max 10
-NARROW 5 - 10m [2]	-FENCED PASTURE [1]	L] 🔄 -MINING / CONSTRUCT	ION [0]		
-VERY NARROW < 5m [1]	COMMENTS					
] [] -NONE [0]	COMMENTS:					
POOL / GLIDE AND RIFFLE / R						
AX. DEPTH	MORPHOLOGY		CURRENT VELOC		(IFFLES!)	
heck 1 ONLY!)	(Check 1 or 2 & AVERAGE)			All That Apply)		Pool /
- 1m [6]	-POOL WIDTH > RIFFLE WI		-EDDIES [1]	-TORRE		Curren
Z - 0.7m [4]	-POOL WIDTH = RIFFLE WI		🗀 -FAST [1]			1
-0.4 to 0.7m [2]		OTH [0]	"MODERATE [1]	🗆 -INTERN	AITTENT [-2]	1
- 0.2 to 0.4m [1]	-IMPOUNDED [-1]	•	-SLOW [1]	-VERY F	AST [1]	Max 12
-< 0.2m [POOL = 0]			-NONE [-1]			
DMMENTS:						
		R CHECK 2 AND A				Riffle / R
FFLE DEPTH	RUN DEPTH	RIFFLE / RUN SI	JBSTRATE	RIFFLE / RUN	EMBEDDEDNESS	.1
-*Best Areas > 10cm [2]		-STABLE (e.g., Co		-NONE [4
-Best Areas 5 - 10cm [1]			.g., Large Gravel) [1]	LOW [1]]	Max 8
-Best Areas < 5cm [0]		-UNSTABLE (Fine		-MODER		
-NO RIFFLE but RUNS pres	ent [0]			-EXTEN		Gradien
					-	
-NO RIFFLE / NO RUN [Met	ric = 0]					
	ric = 0]					
-NO RIFFLE / NO RUN [Met MMENTS:		29 % POI	DL: % GLIF)E:		- 10
-NO RIFFLE / NO RUN [Met MMENTS:	DRAINAGE AREA (sq.mi.): 220.	29 % PO			Gradient Score from Table 2 of Users M based on gradient and drainage area.	1 -


ŧ

River Code: 95-656	RM: 96.82	Stream: Deg Plaines Riv	ies	
Site Code: 13 - 2	Project Code: DRWW2Z	Location: dst. McClare	Ave.	
Date: 1e-23-2022	Scorer: MAS	Latitude: 42.36967	Longitude: _ 87.91834	
1.) SUBSTRATE (Check ONLY Two	o Substrate TYPE BOXES; Estimate % per	rcent		
TYPE POOL	RIFFLE	POOL RIFFLE SUBSTRATE ORIGIN	SUBSTRATE QUALITY	
-BLDR/SLBS [10]	GRAVEL [7]	Check ONE (OR 2 &		
- Lg BOULD [10]	Z 🗆 -SAND [6]			
-BOULDER [9]			-SILT MODERATE [-1]	ſ
		K		
-HARDPAN [4]				L
	□ □ -SILT [2]	× □ -SANDSTONE		
			NESS: -MODERATE [-1]	
NUMBER OF SUBSTRATE TYPES:	-4 or More [2]			
(High Quality Only, Score 5 or >)	-3 or Less [0]	-SHALE [-1]	-NONE [1]	
		-COAL FINES [-		
COMMENTS:			•	
	cover type a score of 0 to 3; see back for in	nstructions)	AMOUNT: (Check ONLY one or	
(Structure)	TYPE: Score All That Occur POOLS > 70 cm [2]	O OXBOWS, BACKWATERS (1)	check 2 and AVERAGE)	
/ OVERHANGING VEGETAT		O_OXBOWS, BACKWATERS [1] AQUATIC MACROPHYTES [1]	-EXTENSIVE > 75% [11]	
2 SHALLOWS (IN SLOW WAT	TER) [1] / BOULDERS [1]	3 LOGS OR WOODY DEBRIS [1]	-MODERATE 25 - 75% [7]	
2 ROOTMATS [1]			-NEARLY ABSENT < 5% [1]	
COMMENTS:				
	neck ONLY one PER Category OR check 2	2 and AVERAGE)		
	EVELOPMENT CHANNELIZA		MODIFICATIONS / OTHER	
			SNAGGING -IMPOUNDMENT	_
			-ISLAND	
] -FAIR [3]	ERING [3] C-LOW [1]		[
	RECOVE			
			-ONE SIDE CHANNEL MODIFICATIONS	
COMMENTS:				
			Lá Lá	
	COSION (check ONE box PER bank or che		River Right Looking Downstream	
RIPARIAN WIDTH		LITY (PAST 100 Meter RIPARIAN)	BANK EROSION	
L R (Per Bank)	L R (Most Predominant Per Bank)	•	L R (Per Bank)	1
□ □ -WIDE > 50m [4]		CONSERVATION TIL		
-MODERATE 10 - 50m [3]	-RESIDENTIAL, PARK, NEW			Ľ
-NARROW 5 - 10m [2]	-FENCED PASTURE [1]			
-VERY NARROW < 5m [1]				
-NONE [0]	COMMENTS:			
5.) POOL / GLIDE AND RIFFLE / RU MAX. DEPTH	MORPHOLOGY			
(Check 1 ONLY!)	(Check 1 or 2 & AVERAGE)		OCITY (POOLS & RIFFLES!) ack All That Apply)	
- 1m [6]		(
- 0.7m [4]	POOL WIDTH = RIFFLE WID		□ -INTERSTITIAL [-1]	ſ
- 0.4 to 0.7m [2]	-POOL WIDTH < RIFFLE WID			
- 0.2 to 0.4m [1]	-IMPOUNDED [-1]	-SLOW [1]	-VERY FAST [1]	
- < 0.2m (POOL = 0)		-NONE [-1]		
COMMENTS:				
	CHECK ONE OF	R CHECK 2 AND ADVERAGE		
RIFFLE DEPTH	RUN DEPTH	RIFFLE / RUN SUBSTRATE	RIFFLE / RUN EMBEDDEDNESS	Ri L
NEFLEDEFIN	- MAX > 50 cm [2]	-STABLE (e.g., Cobble, Boulder) [2]	-NONE [2]	
-*Best Areas > 10cm [2]	🗌 - MAX < 50 cm [1]	-MOD. STABLE (e.g., Large Gravel) [1]	-LOW [1]	L
 -*Best Areas > 10cm [2] -Best Areas 5 - 10cm [1] 				
 → *Best Areas > 10cm [2] → Best Areas 5 - 10cm [1] → Best Areas < 5cm [0] 		-UNSTABLE (Fine Gravel, Sand) [0]	-MODERATE [0]	
-*Best Areas > 10cm [2]	ent [0]	-UNSTABLE (Fine Gravel, Sand) [0]	MODERATE [0]	c

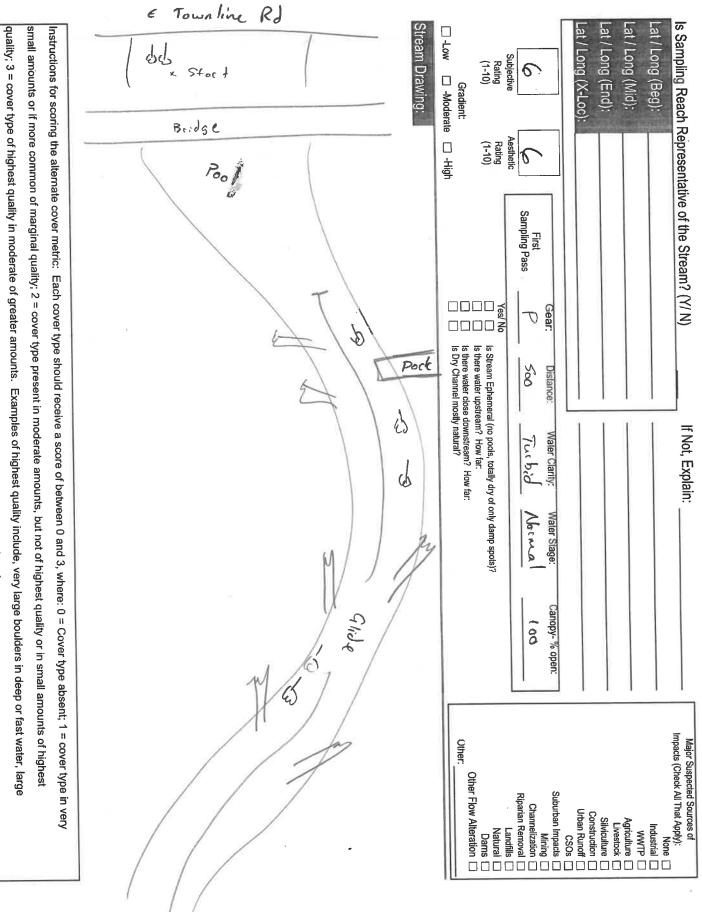


The second secon				
Biodiversit	Qualitative	Habitat Evaluation Index	Field Sheet	QHEI Score: 60
River Code: 95-656	RM: 94.2			
Site Code: 13 - 1				
	Project Code: De. WW 22	Location: Dot Beluidere		
	2 Scorer: MAS	Latitude: 42, 34354	Longitude: _87,94105	
1.) SUBSTRATE (Check ONLY Two	Substrate TYPE BOXES; Estimate % per	cent		
TYPE POOL	RIFFLE	POOL RIFFLE SUBSTRATE ORIGIN	SUBSTRATE QUALITY	
-BLDR/SLBS [10]	🖂 🗹 -GRAVEL [7]	Check ONE (OR 2 & AVE		-
	- <u></u> č ···	LIMESTONE [1]	SILT: SILT HEAVY [-2]	Substrate
	🗆 🗖 -BEDROCK [5]	📈 -TILLS [1]	SILT MODERATE [-1]	
-COBBLE [8]	🗆 🗔 -DETRITUS [3]	WETLANDS [0]	C -SILT NORMAL [0]	14
-HARDPAN [4]	[0]	HARDPAN [0]	SILT FREE [1]	Max 20
			EMBEDDED -EXTENSIVE [-2]	mon Lo
		RIP / RAP [0]	NESS: MODERATE [-1]	
NUMBER OF SUBSTRATE TYPES:	-4 or More [2]			
(High Quality Only, Score 5 or >)	-3 or Less [0]			
			-NONE [1]	
COMMENTS:		COAL FINES [-2]		
	over type a score of 0 to 3; see back for in	structions)	MOUNT OF LONG	
(Structure)	TYPE: Score All That Occur	succionay	AMOUNT: (Check ONLY	
UNDERCUT BANKS [1]		OXBOWS, BACKWATERS [1]	check 2 and AVERAGE)	Cover
OVERHANGING VEGETATIO	DN [1] 2. ROOTWADS [1]	3 AQUATIC MACROPHYTES [1]	-EXTENSIVE > 75% [11]	11
Z SHALLOWS (IN SLOW WAT		LOGS OR WOODY DEBRIS [1]	-MODERATE 25 - 75% [7]	1-
7 ROOTMATS [1]			-SPARSE 5 - 25% [3]	Max 20
COMMENTS:			-NEARLY ABSENT < 5% [.1]
	eck ONLY one PER Category OR check 2			
				* e9
	VELOPMENT CHANNELIZAT		MODIFICATIONS / OTHER	
	-EXCELLENT [7] -NONE [6		SNAGGING -IMPOUN	DMENT Channel
	-GOOD [5] -RECOVE		-ISLAND	11
F	FAIR [3]		-CANOPY REMOVALLEVEED	11
-NONE [1]	-POOR [1] CRECENT		-BANK SH	
	RECOVE		-ONE SIDE CHANNEL MODIFICATIONS	í
		DED [-1]		
COMMENTS:				
	OSION (check ONE box PER bank or che		River Right Looking Downstream	
RIPARIAN WIDTH	FLOOD PLAIN QUAL	ITY (PAST 100 Meter RIPARIAN)	BANK EROSION	
L R (Per Bank)	L R (Most Predominant Per Bank)	LR	L R (Per Bank)	Riparian
-VERY WIDE > 100m [5]	-FOREST, SWAMP [3]	CONSERVATION TILLAG	E[1]	[3]
-WIDE > 50m [4]	🔲 🔲 -SHRUB OR OLD FIELD [2]	URBAN OR INDUSTRIAL		
MODERATE 10 - 50m [3]	- RESIDENTIAL, PARK, NEW I	FIELD [1] OPEN PASTURE, ROWC	ROP [0]	
🗹 🗹 -NARROW 5 - 10m [2]	-FENCED PASTURE [1]	-MINING / CONSTRUCTION		
-VERY NARROW < 5m [1]				
-NONE [0]	COMMENTS:			
5.) POOL / GLIDE AND RIFFLE / RUN	1 QUALITY			
MAX. DEPTH	MORPHOLOGY	CURRENT VELOCIT	Y (POOLS & RIFFLES!)	
(Check 1 ONLY!)	(Check 1 or 2 & AVERAGE)		li That Apply)	Poot /
- 1m [6]	-POOL WIDTH > RIFFLE WID	[H [2] -EDDIES [1]	-TORRENTIAL [-1]	Current
- 0.7m [4]	-POOL WIDTH = RIFFLE WID			······
- 0.4 to 0.7m [2]	-POOL WIDTH < RIFFLE WID			8
- 0.2 to 0.4m [1]	-IMPOUNDED [-1]		-VERY FAST [1]	
-< 0.2m [POOL = 0]				Max 12
COMMENTS:		CT HORE [1]		
	CHECK ONE OR	CHECK 2 AND ADVERAGE		Diffs / Dim
RIFFLE DEPTH	RUN DEPTH	RIFFLE / RUN SUBSTRATE	RIFFLE / RUN EMBEDDEDNESS	Riffle / Run
-*Best Areas > 10cm [2]		-STABLE (e.g., Cobble, Boulder) [2]	-NONE [2]	
-Best Areas 5 - 10cm [1]	<i>e</i>	-MOD. STABLE (e.g., Large Gravel) [1]	-LOW [1]	
-Best Areas < 5cm [0]		-UNSTABLE (Fine Gravel, Sand) [0]	MODERATE [0]	Max 8
-NO RIFFLE but RUNS presen		there is no oranoi, canci [0]		
-NO RIFFLE / NO RUN [Metric			-EXTENSIVE [-1]	Gradient
COMMENTS;	-2			
	DRAINAGE AREA (sq.mi.): 232.	03		
	· · · · · · · · · · · · · · · · · · ·	0.5 % POOL: % GLIDE		
*Best areas must be large enough to support a	population of riffle-obligate species	% RIFFLE: % RUN		rom Table 2 of Users Manual at and drainage area. Max 10

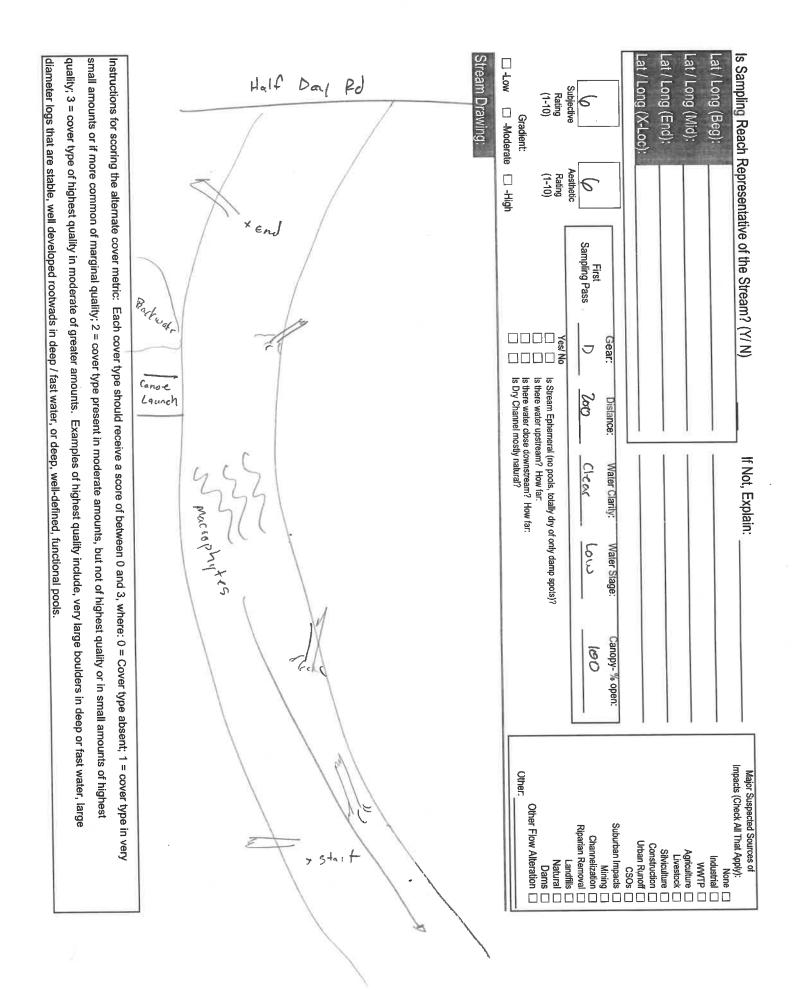


	Habita	at Evaluation Ind	ex Field Sh	eet	QHEI Score: 10.7
River Code: <u>95-656</u> RM: <u>90.6</u>	Stream:	Des Plaines P			
Site Code: 13-16 Project Code: Dewws22	Location:	Provide the second seco		17 05112	
Date: 6-27-2022 Scorer: MAS	Latitude:	42.30575	Longitude:	-87,95456	
1.) SUBSTRATE (Check ONLY Two Substrate TYPE BOXES; Estimate % per					
TYPE POOL RIFFLE	POOL	RIFFLE SUBSTRATE ORK		SUBSTRATE QUALITY	
□ -BLDR/SLBS [10] □ ⊄ -GRAVEL [7]	<u> </u>	Check ONE (OR 2		Check ONE (OR 2 & AVERAGE)	
-Lg BOULD [10]			E [1] SILT:	SILT HEAVY [-2]	Substrate
		-TILLS [1]		-SILT MODERATE [-1]	. 14
	<u></u> K		• -	-SILT NORMAL [0]	
		HARDPAN [SANDSTON		-SILT FREE [1] -EXTENSIVE [-2]	Max 20
				-MODERATE [-1]	
NUMBER OF SUBSTRATE TYPES: Z -4 or More [2]	*****			-NORMAL [0]	
(High Quality Only, Score 5 or >)				-NONE [1]	
		-COAL FINE	S [-2]		
COMMENTS:					
2.) INSTREAM COVER (Give each cover type a score of 0 to 3; see back for i	nstructions)			AMOUNT: (Check ONLY or	
(Structure) TYPE: Score All That Occur (Structure) I VPE: Score All That Occur UNDERCUT BANKS [1] I POOLS > 70 cm [2]	2	OXBOWS, BACKWATERS [1]		check 2 and AVERAGE) Check 2 and AVERAGE Check 2 and AVERAGE	Cover
OVERHANGING VEGETATION [1] 3 ROOTWADS [1]		AQUATIC MACROPHYTES [1]		-MODERATE 25 - 75% [7]	· 17
3 SHALLOWS (IN SLOW WATER) [1] 2 BOULDERS [1]		LOGS OR WOODY DEBRIS [1]		-SPARSE 5 - 25% [3]	Max 20
2 ROOTMATS [1]				NEARLY ABSENT < 5% [1	
COMMENTS:	6				
3.) CHANNEL MORPHOLOGY: (Check ONLY one PER Category OR check :					
<u>SINUOSITY</u> <u>DEVELOPMENT</u> <u>CHANNELIZA</u> -HIGH [4] -EXCELLENT [7] -NONE [STABILTIY			
		-MODERATE [2]	-SIVAG		MENT Channel
□ -LOW [2] □ -FAIR [3] □ -RECOV		-LOW [1]		PY REMOVAL	14
-NONE [1] -POOR [1] -RECEN	T OR NO		-DRED		APING Max 20
RECOVE			. ONE S	DE CHANNEL MODIFICATIONS	
	NDED [-1]				
4.) RIPARIAN ZONE AND BANK EROSION (check ONE box PER bank or ch RIPARIAN WIDTH FLOOD PLAIN QUA		VERAGE per bank) 100 Meter RIPARIAN)	River R	ight Looking Downstream BANK EROSION	
L R (Per Bank) L R (Most Predominant Per Bank		LR		L R (Per Bank)	Riparian
-VERY WIDE > 100m [5] -FOREST, SWAMP [3]		CONSERVATION	TILLAGE [1]		
□ □ -WIDE > 50m [4] □ -SHRUB OR OLD FIELD [2]		🗀 🗀 -urban or Indu		MODERATE [2]	5.5
C-MODERATE 10 - 50m [3] RESIDENTIAL, PARK, NEW	/ FIELD [1]	OPEN PASTURE,		HEAVY / SEVER	E [1] Max 10
		-MINING / CONSTI	RUCTION [0]		
5.) POOL / GLIDE AND RIFFLE / RUN QUALITY MAX. DEPTH MORPHOLOGY		CURRENT V	ELOCITY (POOLS &	RIFFLES!)	
(Check 1 ONLY) (Check 1 or 2 & AVERAGE)		Check All That Apply)		Poot /
- 1m [6] -POOL WIDTH > RIFFLE WI	DTH [2]	-EDDIES [1]		ENTIAL [-1]	Current
□ - 0.7m [4] □ -POOL WIDTH = RIFFLE WI	••	🗌 -FAST [1]		STITIAL [-1]	5
-0.4 to 0.7m [2] POOL WIDTH < RIFFLE WI	DTH [0]	-MODERATE		MITTENT [-2]	
[- 0.2 to 0.4m [1] [] -IMPOUNDED [-1] -< 0.2m {POOL ≈ 0}		-SLOW [1]		FAST [1]	Max 12
COMMENTS:		-NONE [-1]			
		6			
CHECK ONE C	R CHECK 2	AND ADVERAGE			Riffle / Run
RIFFLE DEPTH RUN DEPTH		RUN SUBSTRATE		N EMBEDDEDNESS	
		(e.g., Cobble, Boulder) [2]			2
		ABLE (e.g., Large Gravel) [1] LE (Fine Gravel, Sand) [0]	Low [=	Max 8
-NO RIFFLE but RUNS present [0]	, -ono IADL	LE // me Graver, Ganut [v]		NSIVE [-1]	Gradient
-NO RIFFLE / NO RUN [Metric = 0]		•			Orbuildin
COMMENTS:					·
6.) GRADIENT (ft / mi): 3.32 DRAINAGE AREA (sq.mi.): 253.	75	% POOL: %	6 GLIDE:		8
*Best areas must be large enough to support a population of riffle-obligate species		% RIFFLE:	% RUN:		om Table 2 of Users Manual Land drainage area. Max 10

,

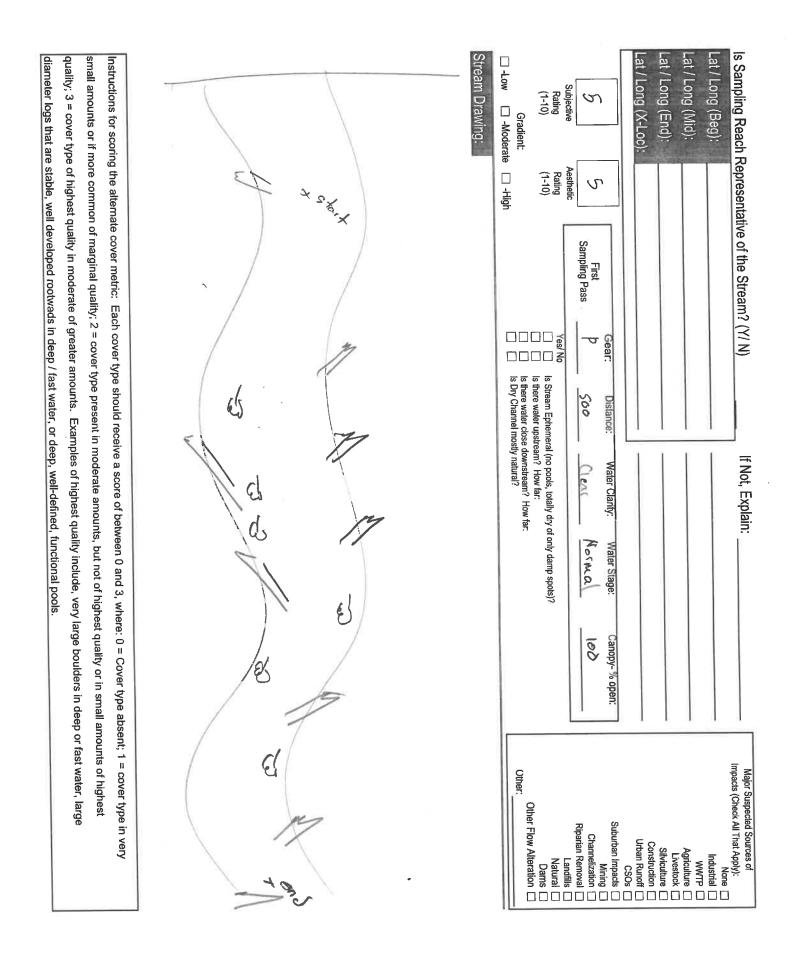

iver Code: 95 - 650	011	bitat Evaluation Index		
		- Andrew Contraction of the State		
te Code: <u>16 - 7</u> ate: 6 · 21 - 20 22	_ Project Code: <u>DQUWZZ</u> Locat Scorer: MAS Latitu			
		Ide: 72.20000	Longitude: -87,93957	
	o Substrate TYPE BOXES; Estimate % percent			
	RIFFLE POOL	RIFFLE SUBSTRATE ORIGIN	SUBSTRATE QUALITY	
] 🔲 -BLDR/SLBS [10]	🖸 🦉 -GRAVEL [7]	Check ONE (OR 2 & AVE	ERAGE) Check ONE (OR 2 & AVERAGE)	
] 🗌 -Lg BOULD [10]	🖉 🖂 -SAND [6]	LIMESTONE [1]	SILT: SILT HEAVY [-2]	Subst
] 🗇 -BOULDER [9]	🗔 🗔 -BEDROCK [5]	— 📈 -TILLS [1]	-SILT MODERATE [-1]	
]Cobble [8]	[] DETRITUS [3]		-SILT NORMAL [0]	12
] 🗆 -HARDPAN [4]	🖂 🗋 -ARTIFICIAL [0] -	HARDPAN [0]		Max
]MUCK [2]	[] [] -SILT [2]	SANDSTONE [0]	EMBEDDED -EXTENSIVE [-2]	
		-RIP / RAP [0]	NESS:MODERATE [-1]	
MBER OF SUBSTRATE TYPE	S: -4 or More [2]	-LACUSTRINE [0]		
igh Quality Only, Score 5 or >)	-3 or Less [0]		-NONE [1]	
		-COAL FINES [-2]		
DMMENTS:				
	cover type a score of 0 to 3; see back for instruction	ons)	AMOUNT: (Check ONLY one or	
(Structure)	TYPE: Score All That Occur		check 2 and AVERAGE)	Cove
UNDERCUT BANKS [1]	POOLS > 70 cm [2]	OXBOWS, BACKWATERS [1]	-EXTENSIVE > 75% [11]	11
OVERHANGING VEGETA			MODERATE 25 - 75% [7]	14
2 SHALLOWS (IN SLOW W	ATER) [1] BOULDERS [1]	LOGS OR WOODY DEBRIS [1]	-SPARSE 5 - 25% [3]	Max
ROOTMATS [1]			-NEARLY ABSENT < 5% [1]	
	heck ONLY one PER Category OR check 2 and AV			
	DEVELOPMENT CHANNELIZATION	,		
	-EXCELLENT [7] -NONE [6]	STABILTIY	MODIFICATIONS / OTHER	0
	Z-GOOD [5] Z-RECOVERED [4]		-SNAGGING -IMPOUNDMENT	Chan
				14
				Max
	RECOVERY [1]			IVIBA 4
	-IMPOUNDED [-1	11		
MMENTS:				
			LI L	
RIPARIAN ZONE AND BANK	ROSION (check ONE box PER bank or check 2 an	nd AVERAGE per bank)	River Right Looking Downstream	
PARIAN WIDTH	FLOOD PLAIN QUALITY (PA	AST 100 Meter RIPARIAN)	BANK EROSION	
R (Per Bank)	L R (Most Predominant Per Bank)	LR	L R (Per Bank)	
-VERY WIDE > 100m [5]				Ripari
—	📕 🖉 -FOREST, SWAMP [3]			
₩IDE > 50m [4]	SHRUB OR OLD FIELD [2]	🗆 📈 -URBAN OR INDUSTRIA	L [0] -MODERATE [2]	Ripari
WIDE > 50m [4]] [] -MODERATE 10 - 50m [3]	SHRUB OR OLD FIELD [2] RESIDENTIAL, PARK, NEW FIELD [1] - URBAN OR INDUSTRIA	L [0] -MODERATE [2] CROP [0] - HEAVY / SEVERE [1]	
	SHRUB OR OLD FIELD [2]	🗆 📈 -URBAN OR INDUSTRIA	L [0] -MODERATE [2] CROP [0] - HEAVY / SEVERE [1]	8.7
	SHRUB OR OLD FIELD [2] RESIDENTIAL, PARK, NEW FIELD [-FENCED PASTURE [1]	1] - URBAN OR INDUSTRIA	L [0] -MODERATE [2] CROP [0] - HEAVY / SEVERE [1]	8.7
WIDE > 50m [4]] [] -MODERATE 10 - 50m [3]	SHRUB OR OLD FIELD [2] RESIDENTIAL, PARK, NEW FIELD [1] - URBAN OR INDUSTRIA	L [0] -MODERATE [2] CROP [0] - HEAVY / SEVERE [1]	8.7
 2 -WIDE > 50m [4] - MODERATE 10 - 50m [3] - NARROW 5 - 10m [2] - VERY NARROW < 5m [1] - NONE [0] 	SHRUB OR OLD FIELD [2]	1] - URBAN OR INDUSTRIA	L [0] -MODERATE [2] CROP [0] - HEAVY / SEVERE [1]	8.7
✓ -WIDE > 50m [4] → -MODERATE 10 - 50m [3] → -NARROW 5 - 10m [2] → -VERY NARROW < 5m [1]	SHRUB OR OLD FIELD [2]	OPEN PASTURE, ROW	L [0] -MODERATE [2] CROP [0] - HEAVY / SEVERE [1] ION [0]	8.7
D-WIDE > 50m [4] MODERATE 10 - 50m [3] NARROW 5 - 10m [2] VERY NARROW < 5m [1]	SHRUB OR OLD FIELD [2]	OPEN PASTURE, ROW	L [0] -MODERATE [2] CROP [0] -HEAVY / SEVERE [1] ION [0]	8.7 Max
D-WIDE > 50m [4] MODERATE 10 - 50m [3] NARROW 5 - 10m [2] VERY NARROW < 5m [1]	SHRUB OR OLD FIELD [2]	OPEN PASTURE, ROW	L [0]MODERATE [2] CROP [0]HEAVY / SEVERE [1] ION [0] TY (POOLS & RIFFLES!) All That Apply)	B.1 Max
D: WIDE > 50m [4] MODERATE 10 - 50m [3] NARROW 5 - 10m [2] VERY NARROW 5 m [1] NONE [0] POOL / GLIDE AND RIFFLE / F X. DEPTH week 1 ONLY1	SHRUB OR OLD FIELD [2]	OPEN PASTURE, ROW	L [0]MODERATE [2] CROP [0]HEAVY / SEVERE [1] ION [0] TY (POOLS & RIFFLES!) All That Apply) TORRENTIAL [-1]	8.7 Max
✓ -WIDE > 50m [4] → -MODERATE 10 - 50m [3] → -NARROW 5 - 10m [2] → -VERY NARROW 5 - 10m [2] → -VERY NARROW 5 - 10m [2] → -VERY NARROW 5 - 10m [2] → -NONE [0] POOL / GLIDE AND RIFFLE / F X. DEPTH eck 1 ONL Y1 → - 1m [6] → -0.7m [4]	SHRUB OR OLD FIELD [2] -RESIDENTIAL, PARK, NEW FIELD [-RESIDENTIAL, PARK, NEW FIELD [-RESIDENTIAL, PARK, NEW FIELD [CURRENT VELOCI (1) CURRENT VELOCI (Check, CHARLES [1] CHARLES [1] CHARLES [1] CHARLES [1] CHARLES [1] CHARLES [1]	L [0]MODERATE [2] CROP [0]HEAVY / SEVERE [1] ION [0] TY (POOLS & RIFFLES!) All That Apply) TORRENTIAL [-1] INTERSTITIAL [-1]	B.1 Max
Image: Som [4] Image: Optimized Control (Control (Contro) (Contro) (Control (Contro) (Contro) (Control (Contr	SHRUB OR OLD FIELD [2] -RESIDENTIAL, PARK, NEW FIELD [-RESIDENTIAL, PARK, NEW FIELD [-RESIDENTIAL, PARK, NEW FIELD [OPEN PASTURE, ROW	L [0] -MODERATE [2] CROP [0] -HEAVY / SEVERE [1] ION [0] TY (POOLS & RIFFLES!) All That Apply) -TORRENTIAL [-1] -INTERSTITIAL [-1] -INTERSTITIAL [-1] -INTERMITTENT [-2]	Root Garage Pool Curre
✓ -WIDE > 50m [4] → MODERATE 10 - 50m [3] → NARROW 5 - 10m [2] → VERY NARROW < 5m [1]	SHRUB OR OLD FIELD [2] -RESIDENTIAL, PARK, NEW FIELD [-RESIDENTIAL, PARK, NEW FIELD [-RESIDENTIAL, PARK, NEW FIELD [CURRENT VELOCI (1) CURRENT VELOCI (Check, CHARLES [1] CHARLES [1] CHARLES [1] CHARLES [1] CHARLES [1] CHARLES [1]	L [0]MODERATE [2] CROP [0]HEAVY / SEVERE [1] ION [0] TY (POOLS & RIFFLES!) All That Apply) TORRENTIAL [-1] INTERSTITIAL [-1]	R.7 Max 7
✓ -WIDE > 50m [4] → -MODERATE 10 - 50m [3] → -NARROW 5 - 10m [2] → -VERY NARROW < 5m [1]	SHRUB OR OLD FIELD [2] -RESIDENTIAL, PARK, NEW FIELD [-RESIDENTIAL, PARK, NEW FIELD [-RESIDENTIAL, PARK, NEW FIELD [[1] URBAN OR INDUSTRIA [1] OPEN PASTURE, ROW OPEN PASTURE, ROW OPEN PASTURE, ROW OPEN PASTURE, ROW CURRENT VELOCI (Check, -EDDIES [1] -FAST [1] -FAST [1] -SLOW [1]	L [0] -MODERATE [2] CROP [0] -HEAVY / SEVERE [1] ION [0] TY (POOLS & RIFFLES!) All That Apply) -TORRENTIAL [-1] -INTERSTITIAL [-1] -INTERSTITIAL [-1] -INTERMITTENT [-2]	Root Garage Pool Curre
 ✓ -WIDE > 50m [4] →MODERATE 10 - 50m [3] →NARROW 5 - 10m [2] →VERY NARROW < 5m [1] →NONE [0] POOL / GLIDE AND RIFFLE / F X. DEPTH eck 1 ONL YI - 1m [6] - 0.7m [4] - 0.4 to 0.7m [2] - 0.2 to 0.4m [1] < 0.2m [POOL = 0] 	SHRUB OR OLD FIELD [2] -RESIDENTIAL, PARK, NEW FIELD [-RESIDENTIAL, PARK, NEW FIELD [-RESIDENTIAL, PARK, NEW FIELD [[1] URBAN OR INDUSTRIA [1] OPEN PASTURE, ROW OPEN PASTURE, ROW OPEN PASTURE, ROW OPEN PASTURE, ROW CURRENT VELOCI (Check, -EDDIES [1] -FAST [1] -FAST [1] -SLOW [1]	L [0] -MODERATE [2] CROP [0] -HEAVY / SEVERE [1] ION [0] TY (POOLS & RIFFLES!) All That Apply) -TORRENTIAL [-1] -INTERSTITIAL [-1] -INTERSTITIAL [-1] -INTERMITTENT [-2]	Root Garage Pool Curre
Image: Som [4] Image: ModeRate 10 - 50m [3] Image: Another ModeRate 10 - 50m [2] Image: Another ModeRate 10 - 50m [4]	SHRUB OR OLD FIELD [2] -RESIDENTIAL, PARK, NEW FIELD [-RESIDENTIAL, PARK, NEW FIELD [-RESIDENTIAL, PARK, NEW FIELD [[1] URBAN OR INDUSTRIA [1] OPEN PASTURE, ROW - MINING / CONSTRUCTI CURRENT VELOCI (Check, - EDDIES [1] -FAST [1] -FAST [1] -SLOW [1] -NONE [-1]	L [0] -MODERATE [2] CROP [0] -HEAVY / SEVERE [1] ION [0] TY (POOLS & RIFFLES!) All That Apply) -TORRENTIAL [-1] -INTERSTITIAL [-1] -INTERSTITIAL [-1] -INTERMITTENT [-2]	Root Garage Pool Curre
✓ -WIDE > 50m [4] → MODERATE 10 - 50m [3] → NARROW 5 - 10m [2] → VERY NARROW < 5m [1]	SHRUB OR OLD FIELD [2] -RESIDENTIAL, PARK, NEW FIELD [-RESIDENTIAL, PARK, NEW FIELD [[1] URBAN OR INDUSTRIA [1] OPEN PASTURE, ROW - MINING / CONSTRUCTI CURRENT VELOCI (Check, - EDDIES [1] -FAST [1] -FAST [1] -SLOW [1] -NONE [-1]	L [0] -MODERATE [2] CROP [0] -HEAVY / SEVERE [1] ION [0] TY (POOLS & RIFFLES!) All That Apply) -TORRENTIAL [-1] -INTERSTITIAL [-1] -INTERSTITIAL [-1] -INTERMITTENT [-2]	Pool Curre JO Max 1
D: WIDE > 50m [4] MODERATE 10 - 50m [3] NARROW 5 - 10m [2] VERY NARROW 5 m [1] NONE [0] POOL / GLIDE AND RIFFLE / F X. DEPTH week 1 ONLY1	SHRUB OR OLD FIELD [2] RESIDENTIAL, PARK, NEW FIELD [FENCED PASTURE [1] COMMENTS: <u>MORPHOLOGY</u> (Check 1 or 2 & AVERAGE) (Check 1 or 2 & AVERAGE) -POOL WIDTH > RIFFLE WIDTH [2] -POOL WIDTH > RIFFLE WIDTH [2] -POOL WIDTH = RIFFLE WIDTH [1] -POOL WIDTH = RIFFLE WIDTH [1] -POOL WIDTH = RIFFLE WIDTH [0] -MPOUNDED [-1] CHECK ONE OR CHECC <u>RUN DEPTH</u> RIFFL -MAX > 50 cm [2] _STAB	CURRENT VELOCI CONSTRUCTI CURRENT VELOCI (Check, CHECK] CONSTRUCTI CHECK] CHECK CH	L [0]MODERATE [2] CROP [0]HEAVY / SEVERE [1] ION [0] TY (POOLS & RIFFLES!) All That Apply) TORRENTIAL [-1] INTERSTITIAL [-1] INTERMITTENT [-2] VERY FAST [1]	Rool Curre JO Max 1
 ✓ -WIDE > 50m [4] →MODERATE 10 - 50m [3] →NARROW 5 - 10m [2] →VERY NARROW < 5m [1] →NONE [0] POOL / GLIDE AND RIFFLE / F X. DEPTH eck 1 ONLYI ✓ - 1m [6] - 0.7m [4] - 0.2 to 0.4m [1] - < 0.2m [POOL = 0] MMENTS:	SHRUB OR OLD FIELD [2] RESIDENTIAL, PARK, NEW FIELD [FENCED PASTURE [1] COMMENTS: <u>MORPHOLOGY</u> (Check 1 or 2 & AVERAGE) (Check 1 or 2 & AVERAGE) -POOL WIDTH > RIFFLE WIDTH [2] -POOL WIDTH > RIFFLE WIDTH [2] -POOL WIDTH = RIFFLE WIDTH [1] -POOL WIDTH = RIFFLE WIDTH [1] -POOL WIDTH = RIFFLE WIDTH [0] -MPOUNDED [-1] CHECK ONE OR CHECC RUN DEPTH RIFFL MAX > 50 cm [2]STAB	OPEN PASTURE, ROW L [0]MODERATE [2] CROP [0]HEAVY / SEVERE [1] ION [0] TY (POOLS & RIFFLES!) All That Apply) TORRENTIAL [-1] INTERNITIAL [-1] INTERMITTENT [-2] VERY FAST [1] RIFFLE / RUN EMBEDDEDNESS NONE [2] LOW [1]	Pool Curre JO Max 1	
✓ -WIDE > 50m [4] → -MODERATE 10 - 50m [3] → -NARROW 5 - 10m [2] → -VERY NARROW < 5m [1]	SHRUB OR OLD FIELD [2] RESIDENTIAL, PARK, NEW FIELD [RESIDENTIAL, PARK, S0 cm [2] STABLE RAX < 50 cm [1] UNST	CURRENT VELOCI CONSTRUCTI CURRENT VELOCI (Check, CHECK] CONSTRUCTI CHECK] CHECK CH	L [0]MODERATE [2] CROP [0]HEAVY / SEVERE [1] ION [0] TY (POOLS & RIFFLES!) All That Apply) TORRENTIAL [-1] INTERMITTENT [-2] VERY FAST [1] RIFFLE / RUN EMBEDDEDNESS NONE [2]	Riffle / Riffle / 「 、 デ
✓ -WIDE > 50m [4] → -MODERATE 10 - 50m [3] → -NARROW 5 - 10m [2] → -VERY NARROW < 5m [1]	SHRUB OR OLD FIELD [2] RESIDENTIAL, PARK, NEW FIELD [RESIDENTIAL, PARK, S0 cm [2] STABLE RAX < 50 cm [1] UNST	[1] URBAN OR INDUSTRIA [1] OPEN PASTURE, ROW CURRENT VELOCI (Check, 	L [0]MODERATE [2] CROP [0]HEAVY / SEVERE [1] ION [0] TY (POOLS & RIFFLES!) All That Apply) TORRENTIAL [-1] INTERNITIAL [-1] INTERMITTENT [-2] VERY FAST [1] RIFFLE / RUN EMBEDDEDNESS NONE [2] LOW [1]	Pool Curre JO Max 1
✓ -WIDE > 50m [4] →MODERATE 10 - 50m [3] →NARROW 5 - 10m [2] →VERY NARROW < 5m [1]	SHRUB OR OLD FIELD [2] RESIDENTIAL, PARK, NEW FIELD [RESIDENTIAL, PARK,	[1] URBAN OR INDUSTRIA [1] OPEN PASTURE, ROW CURRENT VELOCI (Check, 	L [0]MODERATE [2] CROP [0]HEAVY / SEVERE [1] ION [0] TY (POOLS & RIFFLES!) All That Apply) TORRENTIAL [-1] INTERNTITAL [-1] INTERMITTENT [-2] VERY FAST [1]	Riffle / Riffle / 「 、 デ
✓ -WIDE > 50m [4] →MODERATE 10 - 50m [3] →NARROW 5 - 10m [2] →VERY NARROW < 5m [1]	SHRUB OR OLD FIELD [2] RESIDENTIAL, PARK, NEW FIELD [RESIDENTIAL, PARK, PAR	CURRENT VELOCI (1) CURRENT VELOCI (Check, MINING / CONSTRUCT) CURRENT VELOCI (Check, EDDIES [1] FAST [1] FAST [1] MODERATE [1] -SLOW [1] -NONE [-1] CX 2 AND ADVERAGE E/RUN SUBSTRATE LE (e.g., Cobble, Boulder) [2] .STABLE (e.g., Large Gravel) [1] TABLE (Fine Gravel, Sand) [0]	L [0]MODERATE [2] CROP [0]HEAVY / SEVERE [1] ION [0] TY (POOLS & RIFFLES!) All That Apply) TORRENTIAL [-1] INTERNTITAL [-1] INTERMITTENT [-2] VERY FAST [1]	Pool Curre JO Max 1 Riffle / I
✓ -WIDE > 50m [4] □ -MODERATE 10 - 50m [3] □ -NARROW 5 - 10m [2] □ -VERY NARROW < 5m [1]	SHRUB OR OLD FIELD [2] RESIDENTIAL, PARK, NEW FIELD [RESIDENTIAL, PARK,	CURRENT VELOCI (1] OPEN PASTURE, ROWA OPEN PASTURE, ROWA CURRENT VELOCI (Check, EDDIES [1] FAST [1] FAST [1] FAST [1] SLOW [1] NONE [-1] CX 2 AND ADVERAGE E/RUN SUBSTRATE ILE (e.g., Cobble, Boulder) [2] . STABLE (e.g., Large Gravel) [1] ABLE (Fine Gravel, Sand) [0]	L [0]MODERATE [2] CROP [0]HEAVY / SEVERE [1] ION [0] TY (POOLS & RIFFLES!) All That Apply) TORRENTIAL [-1] INTERMITTENT [-2] VERY FAST [1] RIFFLE / RUIN EMBEDDEDNESS NONE [2] 	Pool Curre JO Max 1

	IEI Score:
River Code: 95-656 RM: 87.1 Stream: Des Plaines River	
Site Code: 16-6 Project Code: DeWUZZ Location: Dst. Rockland Rd	
Date: 6-27-2022 Scorer: MAS Latitude: 42,27629 Longitude: -87,93925	
1.) SUBSTRATE (Check ONLY Two Substrate TYPE BOXES; Estimate % percent	
TYPE POOL RIFFLE POOL RIFFLE SUBSTRATE ORIGIN SUBSTRATE QUALITY	
BLDR/SLBS [10] GRAVEL [7] _ Check ONE (OR 2 & AVERAGE) Check ONE (OR 2 & AVERAGE)	
C - LIMESTONE [1] SILT: SILT HEAVY [-2]	Substr
	15
VUMBER OF SUBSTRATE TYPES: 2 4 or More [2] - LACUSTRINE [0] - NORMAL [0]	
High Quality Only, Score 5 or >) - 3 or Less [0] - SHALE [-1] -NONE [1]	
2.] INSTREAM COVER (Give each cover type a score of 0 to 3; see back for instructions) AMOUNT: (Check ONLY one or	
(Structure) TYPE: Score All That Occur check 2 and AVERAGE)	Cove
D UNDERCUT BANKS [1] POOLS > 70 cm [2] OXBOWS, BACKWATERS [1] -EXTENSIVE > 75% [11]	Q
/ OVERHANGING VEGETATION [1] / ROOTWADS [1] 3 AQUATIC MACROPHYTES [1]	10
2 SHALLOWS (IN SLOW WATER) [1] / BOULDERS [1] _ 3 LOGS OR WOODY DEBRIS [1] , - SPARSE 5 - 25% [3]	Max 2
ROOTMATS [1] Interference	
COMMENTS:	
	30
□ -HIGH [4] □ -EXCELLENT [7] □ -NONE [6] □ -HIGH [3] □ -SNAGGING □ -IMPOUNDMENT □ -MODERATE [3] -GOOD [5]	Chanr
-LOW [2] -FAIR [3] -RECOVERING [3] -LOW [1] -CANOPY REMOVAL -LEVEED	17
RECOVERY [1]	IVIDA 2
COMMENTS:	
.) RIPARIAN ZONE AND BANK EROSION (check ONE box PER bank or check 2 and AVERAGE per bank)	
	Riparia
□ □ -VERY WIDE > 100m [5] □ □ -FOREST, SWAMP [3] □ □ -CONSERVATION TILLAGE [1]	1.5
	L Nov 1
	Max 1
□ □ -VERY NARROW < 5m [1]	
OMMENTS:	
) POOL / GLIDE AND RIFFLE / RUN QUALITY	
IAX. DEPTH MORPHOLOGY CURRENT VELOCITY (POOLS & RIFFLES!)	
Check 1 ONLYI (Check 1 or 2 & AVERAGE) (Check All That Apply) Image: All The All Th	Pool
✓ -1m [6] □ -POOL WIDTH > RIFFLE WIDTH [2] □ -EDDIES [1] □ -TORRENTIÀL [-1] □ -0.7m [4] □ -POOL WIDTH = RIFFLE WIDTH [1] □ -FAST [1] □ -INTERSTITIAL [-1]	Currer
	a
□ -0.2 to 0.4m [1] □ -IMPOUNDED [-1] □ -SLOW [1] □ -VERY FAST [1] □ -< 0.2m [POOL = 0] □ -NONE [-1]	Max 1
CMMENTS:	
CHECK ONE OR CHECK 2 AND ADVERAGE	Riffle / F
IFFLE DEPTH RIFFLE / RUN SUBSTRATE RIFFLE / RUN EMBEDDEDNESS	
□ -*Best Areas > 10cm [2] □ -MAX > 50 cm [2] □ -STABLE (e.g., Cobble, Boulder) [2] □ -NONE [2]	12
□ -Best Areas 5 - 10cm [1] □ -MAX < 50 cm [1] □ -MOD. STABLE (e.g., Large Gravel) [1] □ -LOW [1]	Max 8
-Best Areas < 5cm [0] -UNSTABLE (Fine Gravel, Sand) [0] , -MODERATE [0]	
-NO RIFFLE but RUNS present [0]	Gradie
-NO RIFFLE / NO RUN [Metric = 0] OMMENTS:	
27 2/1/1/2	
GRADIENT (ft / mi): 2.1 DRAINAGE AREA (sq.mi.): 261.41 % POOL: % GLIDE:	10
GRADIENT (fl / mi): st areas must be large enough to support a population of riffle-oblighte species % RIFFLE: % RUN: Based on analised and an and an and a minute of the species % RIFFLE: % RUN:	of Livers Manual

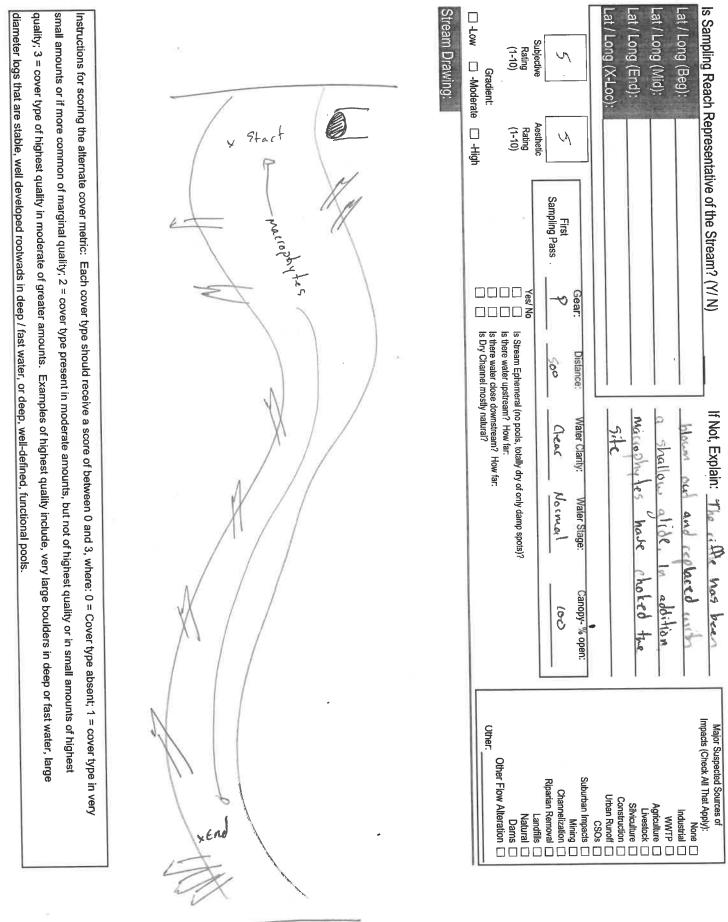

Instructions for scoring the alternate cover metric: Each cover type should receive a score of between 0 and 3, wh small amounts or if more common of marginal quality; 2 = cover type present in moderate amounts, but not of high quality; 3 = cover type of highest quality in moderate of greater amounts. Examples of highest quality include, very diameter logs that are stable, well developed rootwads in deep / fast water, or deep, well-defined, functional pools.	Rockland Rd	Subjective Rating (1-10) Gradient: -Moderate	Is Sampling Reach Representative of the Stream?.(Y/ N) Lat / Long (Mid): Lat / Long (End): Lat / Long (X-Loc):
Instructions for scoring the alternate cover metric: small amounts or if more common of marginal qua quality; 3 = cover type of highest quality in modera diameter logs that are stable, well developed root	Pool Huuses	Aesthetic Rating (1-10)	ch Representati
		First Sampling Pass	ive of the Stream
Each cover type should receive a score of between 0 and 3, where: 0 = Cover type absent; 1 = cover type in very lity; 2 = cover type present in moderate amounts, but not of highest quality or in small amounts of highest te of greater amounts. Examples of highest quality include, very large boulders in deep or fast water, large wads in deep / fast water, or deep, well-defined, functional pools.	Bet Not lawret	Yes/No I I Is Stre I Is ther I Is Dry	12.(Y/ N)
iould receive a sc oresent in modera its. Examples of l	A Park	Distance: Water Clarity: Water Stage: Sou Turbid Abirral Image: Stream Ephemeral (no pools, totally dry of only damp spots)? Is there water upstream? How far: Is there water close downstream? How far: Image: Stream Ephemeral (no pools, totally dry of only damp spots)? Is there water close downstream? How far: Image: Stream Ephemeral (no pools, totally dry of only damp spots)?	
ore of between 0 ite amounts, but r highest quality ind	tran	Water Clarity: Water Fuched Abs pools, totally dry of only dam 7 How far: atural?	If Not, Explain:
and 3, where: 0 : not of highest qua clude, very large mal pools.	Chan 1		
- Cover type abse hity or in small an boulders in deep	X el	Canopy-% open: イクモン	
ent; 1 = cover type nounts of highest or fast water, larg	EL 13	Other	Major Suspected Sources of Impacts (Check All That Apply Indus WM Agricu Lives Silvicu Urban R Constru
e in very		Suburban Impacts Channelization Riparian Removal Lanfills Natural Dams Other Flow Alteration	Major Suspected Sources of Impacts (Check All That Apply): Industrial WWTP Agriculture Livestock Silviculture Construction Urban Runoff CSOs

Qualitative Habitat Evaluation Index Field Sheet	QHEI Score:
River Code: 95-656 RM: 83.6 Stream: Des Plaines River	
site Code: 16-5 Project Code: PRWW22 Location: Dot & Townline Ro	
Date: 4-21-2022 Scorer: MAS Latitude: 42.24028 Longitude: -87.9390	9
1.) SUBSTRATE (Check ONLY Two Substrate TYPE BOXES; Estimate % percent	
TYPE POOL RIFFLE POOL RIFFLE POOL RIFFLE SUBSTRATE ORIGIN SUBSTRATE QUAL	IFX
	[-1]
NUMBER OF SUBSTRATE TYPES: 4 or More [2] -4CUSTRINE [0] -NORMAL [0]	
(High Quality Only, Score 5 or >) 2 -3 or Less [0] -NONE [1]	
COMMENTS:	
	heck ONLY one or
(Structure) TYPE: Score All That Occur check 2 and A	
7 OVERHANGING VEGETATION [1] O ROOTWADS [1] 3 AQUATIC MACROPHYTES [1]	
3 SHALLOWS (IN SLOW WATER) [1] O BOULDERS [1] LOGS OR WOODY DEBRIS [1]	25% [3] Max 20
/ ROOTMATS [1]	SENT < 5% [1]
COMMENTS:	
3.) CHANNEL MORPHOLOGY: (Check ONLY one PER Category OR check 2 and AVERAGE)	
SINUOSITY DEVELOPMENT CHANNELIZATION STABILITY MODIFICATIONS / OTHER	
□ -HIGH [4] □ -EXCELLENT [7] □ -NONE [6] □ -HIGH [3] □-SNAGGING □	
	16
	BANK SHAPING Max.20
RECOVERY [1]	FICATIONS
tu i	
4.) RIPARIAN ZONE AND BANK EROSION (check ONE box PER bank or check 2 and AVERAGE per bank) 👘 River Right Looking Downstr	eam p
RIPARIAN WIDTH FLOOD PLAIN QUALITY (PAST 100 Meter RIPARIAN) BANK EROSK	N
L R (Per Bank) L R (Most Predominant Per Bank) L R L R (Per	· · · · · · · · · · · · · · · · · · ·
	NE / LITTLE [3] DERATE [2] 8
· □ □ -WIDE > 50m [4] □ □ -SHRUB OR OLD FIELD [2] □ □ -URBAN OR INDUSTRIAL [0] □ □ -MO	
	AVY / SEVERE [1] Max 10
□ □ -VERY NARROW < 5m [1] □ □ -NONE [0] COMMENTS:	
COMMENTS:	
5.) POOL / GLIDE AND RIFFLE / RUN QUALITY	
MAX. DEPTH MORPHOLOGY CURRENT VELOCITY (POOLS & RIFFLES!)	
<u>(Check 1 ONLY!)</u> (Check 1 or 2 & AVERAGE) (Check All That Apply)	Pool /
-POOL WIDTH > RIFFLE WIDTH [2] -EDDIES [1] -TORRENTIAL [-1]	Current
-POOL WIDTH = RIFFLE WIDTH [1] -FAST [1] -INTERSTITIAL [-1]	
□ -0.4 to 0.7 m [2]	1
□ -0.2 to 0.4 m [1] □ -IMPOUNDED [-1] □ -VERY FAST [1]	Max 12
□ -<0.2m [POOL = 0] □ -NONE [-1]	
COMMENTS:	
CHECK ONE OR CHECK 2 AND ADVERAGE	Riffle / Run
RIFFLE DEPTH RIFFLE / RUN SUBSTRATE RIFFLE /	
- *Best Areas > 10cm [2] - MAX > 50 cm [2] - STABLE (e.g., Cobble, Boulder) [2] - NONE	
□ -Best Areas 5 - 10cm [1] □ - MAX < 50 cm [1] □ -MOD. STABLE (e.g., Large Gravel) [1] □ -LOW [1] □ -Best Areas < 5cm [0] □ -UNSTABLE (Fine Gravel, Sand) [0] □ -MODERATE [0]	Max 8
-Dest Areas < com [0] -NO RIFFLE but RUNS present [0] -NO RIFFLE but RUNS present [0] -StTENSIVE [-1]	Gradient
	Gradient
COMMENTS:	
6.) GRADIENT (ft / mi): 2.72 DRAINAGE AREA (sq.mi.): 268.07 % POOL: % GLIDE:	8
*Best areas must be large enough to support a population of riffle-obligate species % RIFFLE: % RUN:	Gradient Score from Table 2 of Users Manual based on gradient and drainage area. Max 10
	INIGA IV

diameter logs that are stable, well developed rootwads in deep / fast water, or deep, well-defined, functional pools.

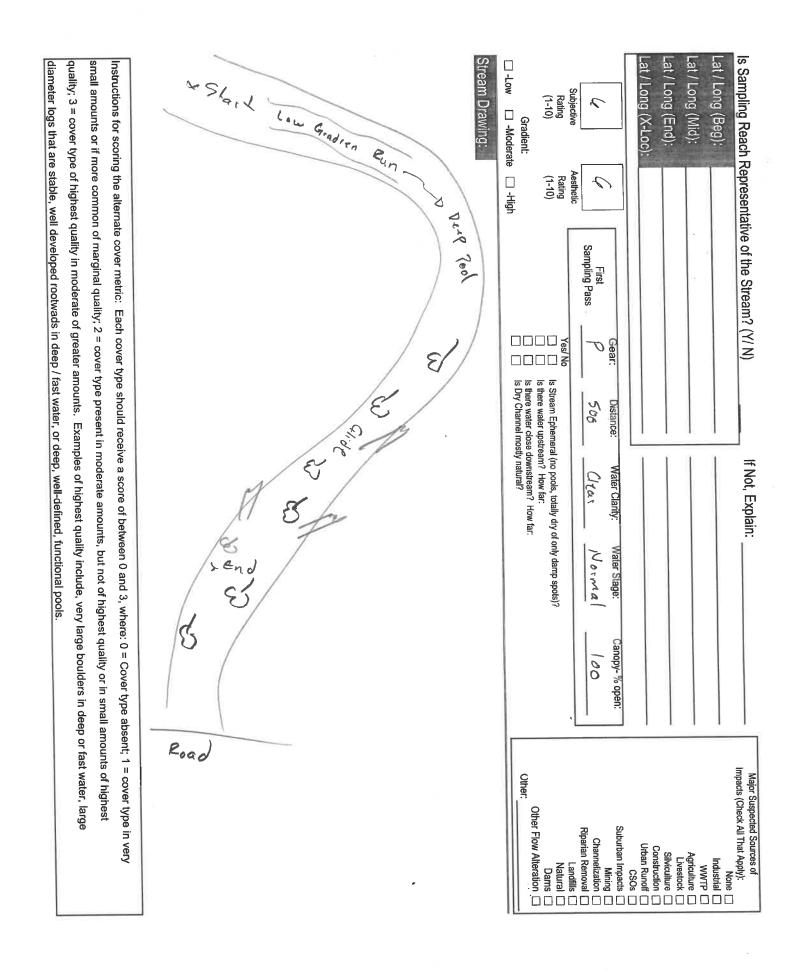

Bits Code 1/2 1	QHEI Scor	e [1]
Bit Book Image: Im		<u>. </u>
113055041 (Cruck ON Y TO Solution PTFE 0005) REFLE POOL RFFLE SMSTIMITE DIMETTY 113055041 (Cruck ON Y TO Solution PTFE 0005) REFLE POOL RFFLE SMSTIMITE DIMETTY 11405041 (Cruck ON Y TO Solution PTFE 0005) REFLE POOL RFFLE SMSTIMITE DIMETTY 11405041 (Cruck ON Y TO Solution PTFE 0005) REFLE POOL RFFLE SMSTIMITE DIMETTY 11405041 (Cruck ON Y TO Solution PTFE 0005) REFLE POOL RFFLE SMSTIMITE DIMETTY 11405041 (Cruck ON Y TO Solution PTFE 0005) REFLECT ON REFLECT POOL RFFLE SMSTIMITE DIMETTY 11405041 (Cruck ON Y TO Solution PTFE 0005) REFLECT ON REFLECT	Site Code: 16 - 1/ Project Code: DRWW27 Location: 1754 Half Day R	_
DDE POOL RFLE Statistic Display Statistic Display D12 Concerning (n) Display Concerni	Date: 4.27-2022 Scorer: MA Latitude: 42.1916 Longitude: -87.9191	
Concerners of a concerner of a	1.) SUBSTRATE (Check ONLY Two Substrate TYPE BOXES; Estimate % percent	
Image: Source (international international internatinteric international international internatio	TYPE POOL RIFFLE POOL RIFFLE SUBSTRATE ORIGIN SUBSTRATE QUALITY	
Converse (i) C	Check ONE (OR 2 & AVERAGE)	
□ CORRECT □ OPERATING PJ ····································		Substrate
□ OCCRELE (#) □ OFERTINUE (*) □ OFERTINUE (*) □ OFERTINUE (*) □ OFERTINE (*) □ OFERTINE (*) □ OFERTINE (*) □ OFERTINE (*) □ OFERTINE (*) □ OFERTINE (*) □ OFERTINE (*) □ OFERTINE (*) □ OFERTINE (*) □ OFERTINE (*) □ OFERTINE (*) □ OFERTINE (*) □ OFERTINE (*) □ OFERTINE (*) □ OFERTINE (*) □ OFERTINE (*) □ OFERTINE (*) □ OFERTINE (*) □ OFERTINE (*) □ OFERTINE (*) □ OFERTINE (*) □ OFERTINE (*) □ OFERTINE (*) □ OFERTINE (*) □ OFERTINE (*) □ OFERTINE (*) □ OFERTINE (*) □ OFERTINE (*) □ OFERTINE (*) □ OFERTINE (*) □ OFERTINE (*) □ OFERTINE (*) □ OFERTINE (*) □ OFERTINE (*) □ OFERTINE (*) □ OFERTINE (*) □ OFERTINE (*) □ OFERTINE (*) □ OFERTINE (*) □ OFERTINE (*) □ OFERTINE (*) □ OFERTINE (*) □ OFERTINE (*) □ OFERTINE (*) □ OFERTINE (*) □ OFERTINE (*) □ OFERTINE (*) □ OFERTINE (*) □ OFERTINE (*) □ OFERTINE (*) □ OFERTINE (*) □ OFERTINE (*) □ OFERTINE (*) □ OFER		
ADCRATE TYPE: A SATETY ADDERVISE ADDORUMENTS ADDORUMENTS ADDORUMENTS ADDORUMENTS ADDORUMENTS		14
IMAGEN OF SUBSTRATE TYPES 4 or More [1] 4 or More [2] 4 or Mo		Max 20
NUMBER OF SUSTRATE TYPE: 4 or More [2] 4 or 0 or 2 or any [2] 4 or 0 or 0 or 2 or any [2] 4 or 0 or 0 or 0 or 0 or 0 o		
High Quality Only, Score 5 or >) 3 or Laws [0]		
COMMENTS:		
COMMENTS:		
21.INSTREAM CODES (Give and control to b size back for instruction) AMDE(N): (Check ONLY one of (Dis Size back for instruction) AMDE(N): (Check ONLY one of (Dis Size back for instruction) Cover 0: (WOREDUTE SANS (I) 2: POOLS > TO one [2] 2: MOONNEES(1) 2: ADDE(N): POOLNEES(1)	COMMENTS:	
(Blocker) TYPE: Store AIT hall Occur Construction Construction <thconstruction< th=""> Construction Con</thconstruction<>		-
L UNDERCOT PANKS (1) 2 POOLS > 70 m (2) 2 OXEGNATES (1) ->DETENSIVE > 75% (1) 3 OVERNAMENG VEGETATION (1) ->DEDEES (1) ->DE	(Structure) TYPE: Score All That Occur check 2 and AVERAGE)	Cover
3 SHALLOWS (IN SLOW WATER) (I)	_ UNDERCUT BANKS [1] POOLS > 70 cm [2] ∠ 💋 OXBOWS, BACKWATERS [1] EXTENSIVE > 75% [11]	
A LEARLY ABSENT 5% [1] A LEARLY ABSENT 5% [1] A LEARLY AB		11
COMMENTS:		Max 20
3). CHANNEL MORPHOLOGY: CHANNEL MORPHOLOGY: Channel 3). MORPHOLOGY: CHANNEL MORPHOLOGY: CHANNEL MORPHOLOGY: Channel 1. HORPHOLOGY: CHANNEL MORPHOLOGY: CHANNEL MORPHOLOGY: CHANNEL MORPHOLOGY: 1. HORPHOLOGY: CHANNEL MORPHOLOGY: CHANNEL MORPHOLOGY: CHANNEL MORPHOLOGY: 1. HORPHOLOGY: CHANNEL MORPHOLOGY: CHANNEL MORPHOLOGY: CHANNEL MORPHOLOGY: 1. HORPHOLOGY: CHANNEL MORPHOLOGY: CHANNEL MORPHOLOGY: Max 20 1. HORPHOLOGY: CHANNEL MORPHOLOGY: CHANNEL MORPHOLOGY: Max 20 1. HORPHOLOGY: COMMENTS: COMMENTS: COMMENTS: COMMENTS: 1. ROP Bank: ELCOOP PLAIN COLLATION SCHOLOGY COMMENTS: COMMENTS: COMMENTS: 1. ROP Bank: COMMENTS: L R (rev Bank) Rescenter (r) Max 10 1. VERY WARROW S- 100n [3] C - ROP Bank: COMSERVATION TLLACE [1] - MORPHOLOGY MAX 10 1. VERY WARROW S- 100n [3] C - RESCENT RANCE AND ANALY AND SCHOLE [1] - VERY WARROW S- 100n [3] C - ROPARTS (R) MAR 10 MAX 10 1. AND REPLOCATION TLLACE [1] - MORPHOLOGY COMMENTS: C - ROPARTS (R) MAR 10		
BINDOSITY DEPLOPMENT Channel STABLITY MODERATE (3)		<u></u>
— HIGH (H) — EXCELENT (7) — HONE (8) — HIGH		
Image: AudDeParte [3] Image: Accover end (3) Im		Channel
Image: Construction of the second		
RECOVERY [1] ONE SIDE CHANNEL MODIFICATIONS COMMENTS:		112
	-NONE [1] -POOR [1] -RECENT OR NO -BANK SHAPING	Max 20
COMMENTS:		
4.). RIPARIAN ZONE AND BANK EROSION (check ONE box PER bank or check 2 and AVERAGE per bank) River Right Looking Downstream 9.1. REARAW MIDTH ELOOD PLAIN QUALITY (PAST 100 Meter RIPARIANY) BANK EROSION L R (Per Bank) L R (Most Predominant Per Bank) L R (Per Bank) L R (Per Bank) - VERY WIDE > 100m (5) - FOREST, SWAMP (3) Conservation TLLAGE (1) - NONE / LITTLE (3) - WHEY WIDE > 100m (5) - FOREST, SWAMP (3) Conservation RILLAGE (1) - NONE / LITTLE (3) - WHEY WIDE > 100m (5) - FOREST, SWAMP (3) - CONSERVATION TLLAGE (1) - NONE / LITTLE (3) - WHODERATE 10 - 50m (3) - FOREST SWAMP (3) - CONSERVATION ROL NOT INTLESS - MODERATE (1) - MODERATE 10 - 50m (2) - FENCED PASTURE (1) - OPEN PASTURE, ROWCROP (0) - HEAVY / SEVERE (1) Max 10 - MODERATE 10 - 200 (2) - COMMENTS: - FORE NTLACE (1) - MODERATE (1) - HEAVY / SEVERE (1) Max 10 - MODERATE 10 - 200 (2) COMMENTS: - FORE NTLACE (1) - MODERATE (1) - HEAVY / SEVERE (1) Max 10 OPOL (1) - HEAVY NARROW < Sm (1)		
RIPARIAN WIDTH FLOOD PLAIN QUALITY (PAST 100 Meter RIPARIAN) BANK EROSION L R (Per Bank) L R (Most Predominant Per Bank) L R L R (Per Bank) Riparian I = OPER WIDE > 100m (5) I = OPERST, SWAMP (8) - CONSERVATION TILLAGE (1) I = OPER PASTURE (2) I = OPER PASTURE (1) I = OPER PASTURE (2) I = O		<u></u>
RIPARIAN WIDTH FLOOD PLAIN QUALITY (PAST 100 Meter RIPARIAN) BANK EROSION L R (Per Bank) L R (Most Predominant Per Bank) L R L R (Per Bank) Riparian I = OPER WIDE > 100m (5) I = OPERST, SWAMP (8) - CONSERVATION TILLAGE (1) I = OPER PASTURE (2) I = OPER PASTURE (1) I = OPER PASTURE (2) I = O	4.) RIPARIAN ZONE AND BANK EROSION (check ONE box PER bank or check 2 and AVERAGE per bank)	
L R. (Per Bank) L R. (Most Predominant Per Bank) L R. L R. (Per Bank) Ripatian		
-VERY WIDE - 100n [5] - FOREST, SWAMP [3] - CONSERVATION TILLAGE [1] - NONE / LITTLE [3] -WIDE > 50m [4] - SHRUB OR OLD FIELD [2] - URBAN OR INDUSTRIAL [0] - MOREPATE [2] -MODEPATE 10 - 50m [3] - FERSDENTIAL, PARK, NEW FIELD [1] OPEN PASTURE, ROWCROP [0] - HEAVY / SEVERE [1] -MARROW 5 - 10m [2] - FENCED PASTURE [1] - MINING / CONSTRUCTION [0] - HEAVY / SEVERE [1] Max 10 -NARROW 5 - 10m [2] - FENCED PASTURE [1] - MINING / CONSTRUCTION [0] - HEAVY / SEVERE [1] Max 10 -NARROW 5 - 10m [2] - FENCED PASTURE [1] - MINING / CONSTRUCTION [0] - HEAVY / SEVERE [1] Max 10 -NARROW 5 - 10m [2] - FENCED PASTURE [1] - MINING / CONSTRUCTION [0] - HEAVY / SEVERE [1] Max 10 -NONE [0] COMMENTS: - <td></td> <td>Riparian</td>		Riparian
NARROW 5 - 10m [2]	-WIDE > 50m [4] -SHRUB OR OLD FIELD [2] -URBAN OR INDUSTRIAL [0]	A.
¹ - VERY NARROW < 5m [1]		Max 10
Image: None [0] COMMENTS: 5.1 POOL/GLIDE AND RIFFLE / RUN QUALITY MAX. DEPTH MORPHOLOGY Check 1 or 2 & AVERAGE) (Check AI That Apply) Pool/ - POOL WIDTH > RIFFLE WIDTH [2] - FODDES [1] - TORRENTIAL [-1] Current - 0.7m [4] - POOL WIDTH > RIFFLE WIDTH [1] - FAST [1] - INTERSTITIAL [-1] Image: Out of 0.7m [2] - POOL WIDTH = RIFFLE WIDTH [0] - FAST [1] - INTERSTITIAL [-1] Image: Out of 0.7m [2] Image: Out of 0.7m [2] - POOL WIDTH = RIFFLE WIDTH [0] - FAST [1] - INTERSTITIAL [-1] Image: Out of 0.7m [2] Image: Out of 0.7m [2] - POOL WIDTH = RIFFLE WIDTH [0] - FAST [1] - INTERMITTENT [-2] Image: Out of 0.7m [2] Image: Out of 0.7m [2] - POOL WIDTH = RIFFLE / RUN SUBSTRATE RIFFLE / RUN EMBEDDEDNESS RIFFLE / RUN EMBEDDEDNESS Image: Out of 0.7m [2] - MAX > 50 cm [2] - STABLE (e.g., Cobble, Boulder) [2] - NONE [2] Image: Out of 0.7m [2] Image: O		
S.J. POOL / GLIDE AND RIFFLE / RUN QUALITY MAX. DEPTH MORPHOLOGY CURRENT VELOCITY (POOLS & RIFFLES!) (Check 1 ONLYI) (Check 1 or 2 & AVERAGE) (Check All That Apply) Pool / (Check 1 ONLYI) (Check 1 or 2 & AVERAGE) (Check All That Apply) Pool / (Check 1 ONLYI) (Check 1 or 2 & AVERAGE) (Check All That Apply) Pool / (Check 1 ONLYI) (Check 1 or 2 & AVERAGE) (Current) (Check 1 or 2 & AVERAGE) (Check All That Apply) Pool / (O''''''''''''''''''''''''''''''''''''		
MAX_DEPTH MORPHOLOGY CURRENT VELOCITY (POOLS & RIFFLES!) (Check 1 ONLY] (Check 1 or 2 & AVERAGE) (Check AII That Apply) Pool / (Check 1 ONLY] (Check 1 or 2 & AVERAGE) (Check AII That Apply) Pool / (Check 1 ONLY] (Check 1 or 2 & AVERAGE) (Check AII That Apply) Pool / (Check 1 ONLY] (Check 1 or 2 & AVERAGE) (Check AII That Apply) Pool / (Check 1 0.7m [4] (Pool - ASI [1] -INTERSITIAL [-1] Current (Check 1 0.7m [2] -POOL WIDTH = RIFFLE WIDTH [0] -ANDERATE [1] -INTERNITIENT [-2] (Check 1 0.7m [2] (Check 1 0.7m [2] -POOL WIDTH = RIFFLE WIDTH [0] -ANDERATE [1] -INTERNITIENT [-2] (Check 1 0.7m [2] (Check 1 0.7m [2] <t< td=""><td></td><td></td></t<>		
MAX_DEPTH MORPHOLOGY CURRENT VELOCITY (POOLS & RIFFLES!) (Check 1 ONLY] (Check 1 or 2 & AVERAGE) (Check AII That Apply) Pool / (Check 1 ONLY] (Check 1 or 2 & AVERAGE) (Check AII That Apply) Pool / (Check 1 ONLY] (Check 1 or 2 & AVERAGE) (Check AII That Apply) Pool / (Check 1 ONLY] (Check 1 or 2 & AVERAGE) (Check AII That Apply) Pool / (Check 1 0.7m [4] (Pool - ASI [1] -INTERSITIAL [-1] Current (Check 1 0.7m [2] -POOL WIDTH = RIFFLE WIDTH [0] -ANDERATE [1] -INTERNITIENT [-2] (Check 1 0.7m [2] (Check 1 0.7m [2] -POOL WIDTH = RIFFLE WIDTH [0] -ANDERATE [1] -INTERNITIENT [-2] (Check 1 0.7m [2] (Check 1 0.7m [2] <t< td=""><td>5.) POOL / GLIDE AND RIFFLE / RUN QUALITY</td><td></td></t<>	5.) POOL / GLIDE AND RIFFLE / RUN QUALITY	
ICheck 1 ONL YI (Check 1 or 2 & AVERAGE) (Check AI That Apply) Pool / Image: Pool WiDTH > RIFFLE WIDTH [2] Image: Pool WiDTH > RIFFLE WIDTH [1] Image: Pool WiDTH > RIFFLE / RUN SUBSTRATE Riffle / Run EmBEDDEDNESS Image: Pool WiDTH > RIFFLE / RUN SUBSTRATE Riffle / Run EmBEDDEDNESS Image: Pool > Riffle / Run EmBEDDEDNESS Image: Pool Midth > Riffle / Run EmBEDDEDN		
¹ - 1m (6) ¹ - POOL WIDTH > RIFFLE WIDTH [2] ¹ - EDDIES [1] ¹ - TORRENTIAL [-1] Current ¹ - 0.7m [4] ¹ POOL WIDTH = RIFFLE WIDTH [1] ¹ - FAST [1] ¹ - INTERNITIAL [-1] Current ¹ - 0.4 to 0.7m [2] ¹ POOL WIDTH < RIFFLE WIDTH [0]		Pool /
 -0.7m [4] -POOL WIDTH = RIFFLE WIDTH [1] -FAST [1] -INTERSTITIAL [-1] -0.4 to 0.7m [2] -POOL WIDTH < RIFFLE WIDTH [0] -MODERATE [1] -INTERMITTENT [-2] -0.2 to 0.4m [1] -MPOUNDED [-1] -SLOW [1] -VERY FAST [1] Max 12 COMMENTS:	- 1m [6] -POOL WIDTH > RIFFLE WIDTH [2] -EDDIES [1] -TORRENTIAL [-1]	
 - 0.2 to 0.4 m [1] - MPOUNDED [-1] - SLOW [1] - VERY FAST [1] Max 12 0.2 m [POOL = 0] CHECK ONE OR CHECK 2 AND ADVERAGE - NONE [-1] - NONE [-1] - NONE [-1] Max 12 CMMENTS: 	□ - 0.7m [4] □ -FAST [1] □ -FAST [1]	
 -<0.2m [POOL = 0] -NONE [-1] max ret	- 0.4 to 0.7m [2] -POOL WIDTH < RIFFLE WIDTH [0] -INTERMITTENT [-2]	7
COMMENTS: CHECK ONE OR CHECK 2 AND ADVERAGE Riffle / Run Riffle / Run EMBEDDEDNESS Riffle / Run EMBEDDEDNESS OHECK ONE OR CHECK 2 AND ADVERAGE Riffle / Run Riffle / Run EMBEDDEDNESS Image: State Areas > 10cm [2] Image: -MAX > 50 cm [2] Image: -STABLE (e.g., Cobble, Boulder) [2] Image: -NONE [2] Image: -NON		Max 12
CHECK ONE OR CHECK 2 AND ADVERAGE Riffle / Run Riffle / Run Riffle / Run EMBEDDEDNESS Riffle / Run Best Areas > 10cm [2] - MAX > 50 cm [2] - STABLE (e.g., Cobble, Boulder) [2] - MAX < 50 cm [1] - MAX < 50 cm [1] - MOD. STABLE (e.g., Large Gravel) [1] - LOW [1] - MONE [2] - MAX < 50 cm [1] - MOD. STABLE (e.g., Large Gravel) [1] - LOW [1] - MODERATE [0] - NO RIFFLE but RUNS present [0] - NO RIFFLE but RUNS present [0] - NO RIFFLE / NO RUN [Metric = 0] COMMENTS:		
RIFFLE DEPTH RUN DEPTH RIFFLE / RUN SUBSTRATE RIFFLE / RUN EMBEDDEDNESS Best Areas > 10cm [2] -MAX > 50 cm [2] -STABLE (e.g., Cobble, Boulder) [2] -NONE [2] -NONE [2] Best Areas < 5 - 10cm [1]		
RIFFLE DEPTH RUN DEPTH RIFFLE / RUN SUBSTRATE RIFFLE / RUN EMBEDDEDNESS Best Areas > 10cm [2] -MAX > 50 cm [2] -STABLE (e.g., Cobble, Boulder) [2] -NONE [2] -NONE [2] Best Areas < 5 - 10cm [1]	CHECK ONE OR CHECK 2 AND ADVERAGE	Diffe / Due
Best Areas > 10cm [2] -MAX > 50 cm [2] -STABLE (e.g., Cobble, Boulder) [2] -NONE [2		
-Best Areas 5 - 10cm [1] -MAX < 50 cm [1] -MOD. STABLE (e.g., Large Gravel) [1] -LOW [1] -MODERATE [0] -NO RIFFLE but RUNS present [0] -NO RIFFLE but RUNS present [0] -NO RIFFLE / NO RUN [Metric = 0] COMMENTS: 6.) GRADIENT (ft / mi): 2 - <u>387</u> DRAINAGE AREA (sq.mi.): 273. 21 % POOL: % GLIDE: % GRADIENT % GLIDE:		2
-Best Areas < 5cm [0] -VNSTABLE (Fine Gravel, Sand) [0] -MODERATE [0] -NO RIFFLE but RUNS present [0] -NO RIFFLE / NO RUN [Metric = 0] COMMENTS: - 6.) GRADIENT (ft / mi): 2.387 DRAINAGE AREA (sq.mi.): 273.21 % POOL: % GLIDE: % GLI	-Best Areas 5 - 10cm [1] - MAX < 50 cm [1] -MOD. STABLE (e.g., Large Gravei) [1] -LOW [1]	
-NO RIFFLE / NO RUN [Metric = 0] COMMENTS: 6.) GRADIENT (ft / mi): 2.387 DRAINAGE AREA (sq.mi.): 273.21 % POOL: % GLIDE: % Store from Table 2 of Users Manual		
COMMENTS: 6.) GRADIENT (ft / mi): 2.387 DRAINAGE AREA (sq.mi.): 273.21 % POOL: % GLIDE: 8. POOL: % GLIDE: % GLID		Gradient
6.) GRADIENT (ft / mi): 2.387 DRAINAGE AREA (sq.mi.): 273.21 % POOL: % GLIDE: "Based arrays and be larger and be an addition of all the formation of the fore	•	
Bact aroos must be land and the second and the seco		
		8
		Max 10

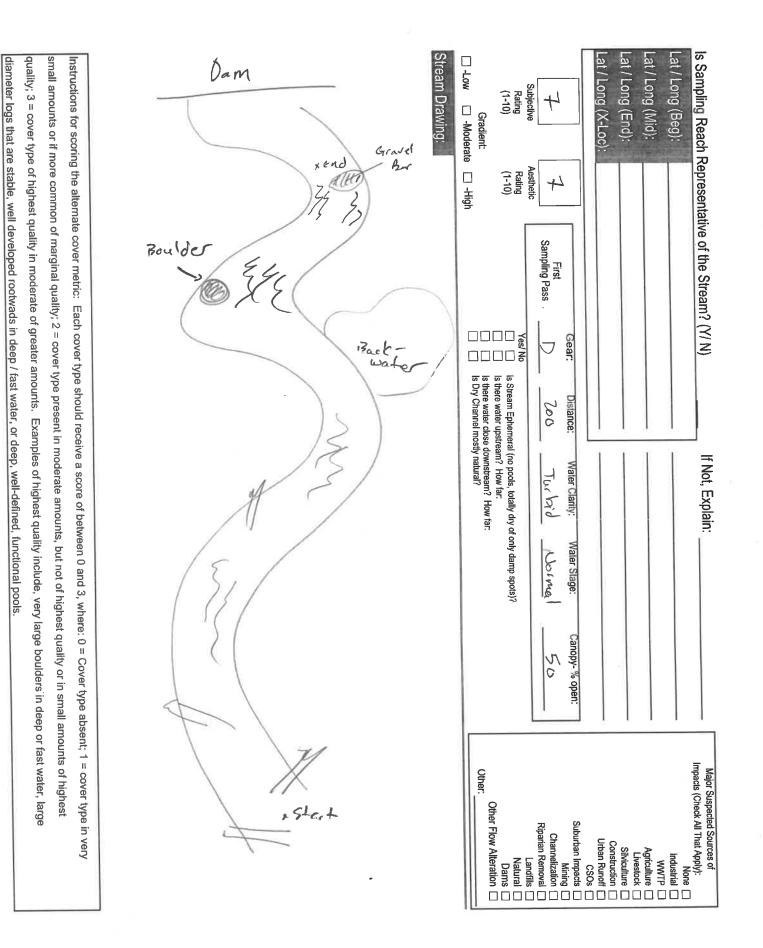
QUALITY Qualitative Habitat Evaluation Index Field Sheet QHEIS	core:
River Code: 95-656 RM: 82.9 Stream: Des Plaines Rives	
site Code: 16-8 Project Code: DRWWSZZ Location: ust. dam	
Date: La -21-2022 Scorer: MIAS Latitude: 42.23111 Longitude: -87 93436	
1.) SUBSTRATE (Check ONLY Two Substrate TYPE BOXES; Estimate % percent	
TYPE POOL RIFFLE POOL RIFFLE POOL RIFFLE SUBSTRATE ORIGIN SUBSTRATE QUALITY	
	Substrate
	Substrate
	1/
-COBBLE [8]DETRITUS [3]WETLANDS [0]SILT NORMAL [0] -HARDPAN [4]ARTIFICIAL [0]HARDPAN [0]SILT FREE [1]	11
□ □-MUCK [2] X □ □-SILT [2] X □ □-SANDSTONE [0] EMBEDDED Ø -EXTENSIVE [-2]	Max 20
NUMBER OF SUBSTRATE TYPES: 4 or More [2] -LACUSTRINE [0] -NORMAL [0]	
(High Quality Only, Score 5 or >) 2 -3 or Less [0] -SHALE [-1] -NONE [1]	
COMMENTS:	
2.) INSTREAM COVER (Give each cover type a score of 0 to 3; see back for instructions) AMOUNT: (Check ONLY one or	
(Structure) TYPE: Score All That Occur check 2 and AVERAGE)	Cover
UNDERCUT BANKS [1] POOLS > 70 cm [2] OXBOWS, BACKWATERS [1]	
2 OVERHANGING VEGETATION [1] ROOTWADS [1] 2 AQUATIC MACROPHYTES [1] -MODERATE 25 - 75% [7]	12
3 SHALLOWS (IN SLOW WATER) [1] 0 BOULDERS [1] 3 LOGS OR WOODY DEBRIS [1] -SPARSE 5 - 25% [3]	Max 20
ROOTMATS [1]	
3.) CHANNEL MORPHOLOGY: (Check ONLY one PER Category OR check 2 and AVERAGE)	
SINUOSITY DEVELOPMENT CHANNELIZATION STABILITY MODIFICATIONS / OTHER	
	Channel
-MODERATE [3] -GOOD [5] -RECOVERED [4] -RECOVERED [4] -ISLAND	
-LOW [2] -FAIR [3] -LOW [1] -LOW [1] -LEVEED	11
-NONE [1] -POOR [1] -RECENT OR NO -BANK SHAPING	Max 20
RECOVERY [1]	
-IMPOUNDED [-1]	
COMMENTS:	
4.) RIPARIAN ZONE AND BANK EROSION (check ONE box PER bank or check 2 and AVERAGE per bank)	
RIPARIAN WIDTH FLOOD PLAIN QUALITY (PAST 100 Meter RIPARIAN) BANK EROSION	
L R (Per Bank) L R (Most Predominant Per Bank) L R L R (Per Bank)	Riparian
	9
□ [Z]-WIDE > 50m [4] □ - SHRUB OR OLD FIELD [2] □ [Z]-URBAN OR INDUSTRIAL [0] Z [Z] -MODERATE [2]	4
🗆 🖉 -MODERATE 10 - 50m [3] 🔹 📄 -RESIDENTIAL, PARK, NEW FIELD [1] 👘 📅 -OPEN PASTURE, ROWCROP [0] 👘 🗇 -HEAVY / SEVERE [1]	Max 10
ONARROW 5 - 10m [2] OFFINCED PASTURE [1] ONARROW 5 - 10m [2] OFFINCED PASTURE [1] OFFINCED PASTURE [1]	
□ □-VERY NARROW < 5m [1]	
OMMENTS:	
5.) POOL / GLIDE AND RIFFLE / RUN QUALITY	
<u>MAX. DEPTH MORPHOLOGY CURRENT VELOCITY</u> (POOLS & RIFFLES!)	
Interview Interview <t< td=""><td>Pool /</td></t<>	Pool /
	Current
-0.7m [4] -POOL WIDTH = RIFFLE WIDTH [1] -FAST [1] -INTERSTITIAL [-1]	
- 0.4 to 0.7m [2] -POOL WIDTH < RIFFLE WIDTH [0] -INTERMITTENT [-2]	1
□ - 0.2 to 0.4m [1]	Max 12
□ -<0.2m [POOL = 0) □ -NONE [-1]	
COMMENTS:	
	Riffle / Run
RIFFLE DEPTH RUN DEPTH RIFFLE / RUN SUBSTRATE RIFFLE / RUN EMBEDDEDNESS -*Best Areas > 10cm [2] -MAX > 50 cm [2] -STABLE (e.g., Cobble, Boulder) [2] -NONE [2]	$ \cap $
- Best Areas 5 - 10cm [2] - MAX > 30 cm [2] - ST ABLE (e.g., Cobbie, Boulder) [2] -NONE [2] -NONE [2] -NONE [2] -NONE [2]	Max 8
	IVIAX O
-NO RIFFLE but RUNS present [0] -NO RIFFLE but RUNS present [0] -NO RIFFLE but RUNS present [0]	Gradient
-NO RIFFLE / NO RUN [Metric = 0]	are an an ar of the
COMMENTS:	0
6.) GRADIENT (ft / mi): 2.635 DRAINAGE AREA (sq.mi.): 268.9 % POOL: 6. % GLIDE:	- 8
*Best areas must be large enough to support a population of riffie-obl/gate species % RIFFLE: % RUN: based on gradient and drainage area	


Qualitative Habitat Evaluation Index Field Sheet	QHEI Score:
River Code: <u>95-656</u> RM: <u>76.7</u> Stream: Def Plaines Rises Site Code: <u>16-3</u> Project Code: <u>DRWWZZ</u> Location: <u>dst</u> , <u>Deerfield</u> Rd. Date: <u>6-26-2022</u> Scorer: <u>MAS</u> Latitude: <u>42,16706</u> Longitude: -87,91377	
1.) SUBSTRATE (Check ONLY Two Substrate TYPE BOXES; Estimate % percent TYPE POOL RIFFLE POOL RIFFLE SUBSTRATE ORIGIN SUBSTRATE QUALITY □ -BLDR/SLBS [10] □ -GRAVEL [7] Check ONE (OR 2 & AVERAGE) SILT MODERATE [2] -SILT MODERATE [1] -SILT MODERATE [1] -SILT NORMAL [0] -SILT FREE [1] -NONE [1] -NORMAL [0]	[-1]] Max 20
2.) INSTREAM COVER (Give each cover type a score of 0 to 3; see back for instructions) AMOUNT: (Check 2 and AVER. (Structure) TYPE: Score All That Occur 3 OXBOWS, BACKWATERS [1] EXTENSIVE > 759 / OVERHANGING VEGETATION [1] 7 ROOTWADS [1] 2 AQUATIC MACROPHYTES [1] MODERATE 25 - 759 / OVERHANGING VEGETATION [1] 0 BOULDERS [1] 2 LOGS OR WOODY DEBRIS [1] SPARSE 5 - 25% / ROOTMATS [1] 0 BOULDERS [1] 2 LOGS OR WOODY DEBRIS [1] NEARLY ABSENT	AGE) Cover % [11] 75% [7] [3] Max 20
-MODERATE [3] -GOOD [5] -RECOVERED [4] -MODERATE [2] -RELOCATION -IS -IS	MPOUNDMENT Channel SLAND V EVEED ANK SHAPING Max 20 ATIONS
4.) RIPARIAN ZONE AND BANK EROSION (check ONE box PER bank or check 2 and AVERAGE per bank) River Right Looking Downstream RIPARIAN WIDTH FLOOD PLAIN QUALITY (PAST 100 Meter RIPARIAN) BANK EROSION L R (Per Bank) L R (Most Predominant Per Bank) L R L R (Per Bank) L R (Per Bank) -VERY WIDE > 100m [5] -FOREST, SWAMP [3] -CONSERVATION TILLAGE [1] -NONE /I -WIDE > 50m [4] -SHRUB OR OLD FIELD [2] -URBAN OR INDUSTRIAL [0] -MODERATE 10 - 50m [3] -MODERATE 10 - 50m [3] -RESIDENTIAL, PARK, NEW FIELD [1] -OPEN PASTURE, ROWCROP [0] -HEAVY / -NARROW 5 - 10m [2] -FENCED PASTURE [1] -MINING / CONSTRUCTION [0] -VERY NARROW < 5m [1]	LITTLE [3] ATE [2]
S.) POOL / GLIDE AND RIFFLE / RUN QUALITY MAX. DEPTH MORPHOLOGY (Check 1 ONL YI) (Check 1 or 2 & AVERAGE) (Check All That Apply) - 1m [6] - POOL WIDTH > RIFFLE WIDTH [2] - EDDIES [1] - TORRENTIAL [-1] - 0.7m [4] - POOL WIDTH = RIFFLE WIDTH [1] - FAST [1] - INTERSTITIAL [-1] - 0.7m [4] - POOL WIDTH = RIFFLE WIDTH [1] - FAST [1] - INTERSTITIAL [-1] - 0.4 to 0.7m [2] - POOL WIDTH < RIFFLE WIDTH [0]	Pool / Current
CHECK ONE OR CHECK 2 AND ADVERAGE RIFFLE DEPTH RUN DEPTH RIFFLE / RUN SUBSTRATE RIFFLE / RUN EMBEDDEDNESS -*Best Areas > 10cm [2] - MAX > 50 cm [2] - STABLE (e.g., Cobble, Boulder) [2] - NONE [2] -Best Areas > 10cm [1] - MAX > 50 cm [1] - MOD. STABLE (e.g., Large Gravel) [1] - LOW [1] -Best Areas > 10cm [0] - MAX < 50 cm [1]	Riffle / Ru
6.) GRADIENT (ft / mi): 2.235 DRAINAGE AREA (sq.mi.): 314.68 % POOL: 600 % GLIDE: 600	dient Score from Table 2 of Users Manual ed on gradient and drainage area. Max 10

RIFFLE DEPTH RUN DEPTH RIFFLE / RUN SUBSTRATE RIFFLE / RUN EMBEDDEDNESS -*Best Areas > 10cm [2] - MAX > 50 cm [2] - STABLE (e.g., Cobble, Boulder) [2] -NONE [2] -NONE [2] -*Best Areas > 10cm [1] - MAX < 50 cm [1] - MOD. STABLE (e.g., Large Gravel) [1] -LOW [1] Max 8 -Best Areas < 5cm [0] - UNSTABLE (Fine Gravel, Sand) [0] -MODERATE [0] Max 8 -NO RIFFLE but RUNS present [0] -UNSTABLE (Fine Gravel, Sand) [0] -EXTENSIVE [-1] Gradient -NO RIFFLE / NO RUN [Metric = 0] -NO RIFFLE / NO RUN [Metric = 0] Scondmin: Scond from Table 2 of Users Manual 6.) GRADIENT (ft / mi): 2_1/9 DRAINAGE AREA (sq.mi.): 32.3.96 % POOL: % GLIDE:	Biodivers	ualitative	Habitat Evaluation Index F	ield Sheet QHEI Score	re: 59,2-
Bit Code: Image: Code: Openant Description: Description: <thdescription:< th=""> <thdescription:< th=""></thdescription:<></thdescription:<>	River Code: 95-656	RM: 75.4	Stream: Des Plaines River	ſ	
Drive C: 2(-2, 2, 2, 2) Langender C: 7(-7, 2, 7) Langender C: 7(-7, 2, 7) C C DIBUBLING: Concord VTT: Soldstade Marcol FOOL MARCEL FOOL MARCEL Soldstade Marcol Marcol Soldstade Marcol Soldstade Marcol S	Site Code: 16-2	Project Code: Dewus 27		Ro	
PTC POOL RFFLE SUBSTITUT CALINY COMPACT STRATE CARNARY STRATE CARNARY STRATE CARNARY STRATE COMPACT STRATE CARNARY STRATE CARNARY STRATE CARNARY STRATE CARNARY STRATE COMPACT STRATE CARNARY STRATE CARNARY STRATE CARNARY STRATE CARNARY STRATE CARNARY STRATE COMPARTAL STRATE CA	Date: 6.26.2022	Scorer: MAS	Latitude: 42,15276	Longitude: -87,91022	
PTC POOL RFFLE SUBSTITUT CALINY COMPACT STRATE CARNARY STRATE CARNARY STRATE CARNARY STRATE COMPACT STRATE CARNARY STRATE CARNARY STRATE CARNARY STRATE CARNARY STRATE COMPACT STRATE CARNARY STRATE CARNARY STRATE CARNARY STRATE CARNARY STRATE CARNARY STRATE COMPARTAL STRATE CA	1.) SUBSTRATE (Check ONLY Tw	vo Substrate TYPE BOXES: Estimate % pero	cent		_
Constraints				SUBSTRATE OUALITY	
Construction Construction Construn Construn Construn					
CORRECT: [P]		<u> </u>		— 14	Substrate
□ +4400PAN(0) □ +440PAN(0) □ +440PAN(0				-	11
AMDRX P1 AMDRX P2					
MARGER OF SAUSTRAFE TYPES: A or Mont [2] /ul>					Max 20
MARGED SUBSTRATE TYPES:	-MUCK [2]	[] [] -SILT [2]		EMBEDDED Ar-EXTENSIVE [-2]	
High Quality Only, Score 5 or >> A or Less (0) A COULE FINES (2) A COULTE FINES (2) A COULTE FINES (2) A COULTE FINES (2) A COUNTER FINES (2)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			NESS: MODERATE [-1]	
COMMENTS:	NUMBER OF SUBSTRATE TYPES	5: 4 or More [2]	-LACUSTRINE [0]	-NORMAL [0]	
COMMENTS:	(High Quality Only, Score 5 or >)	-3 or Less [0]	-SHALE [-1]	-NONE [1]	
21.115TECAL CODES (One seals now right as some of to 3; see lask for instructions) Add/NULL Codes (NV and or deals and AVERAGE) Count of the 2 and AVERAGE) Mat 2000 AVERAGE AVERAGE) 3. Industries (I) AVERAGE AVERAGE (I) AVERAGE AVERAGE) Status (I) AVERAGE AVERAGE) Status (I) AVERAGE AVERAGE) Status (I) AVERAGE AVERAGE) Mat 20 AVERAGE AVERAGE) 3. Industries (I) AVERAGE AVERAGE) EVERCOVERING (I) AVERAGE AVERAGE) Status (I) AVERAGE AVERAGE) Status (I) AVERAGE AVERAGE) AVERAGE AVERAGE) 3. Industries (I) AVERAGE AVERAGE (I) AVERAGE		<i>L</i>	-COAL FINES [-2]		
Standardy TYPE: Store AF The Court Construct and AEPARES Court Court					
			structions)	AMOUNT: (Check ONLY one or	
				, , ,	Cover
3 SHALLOWS (IN SLOW WATER) (1 0 BOULDERS (1) SPARSE 5 - 25% (8) Max 20 2 PROTANTS (1)				· · · ·	.1
	`	·· <u> </u>			11
COMMENTS:		ATER) [1] OBOULDERS [1]	LOGS OR WOODY DEBRIS [1]		Max 20
3.) CHANNELLMORPHOLOGY Channell ZATION STABILITY MODPFICATIONS / OTHER 3.) CHANNELLMORPHOLOGY CHANNELZATION STABILITY MODPFICATIONS / OTHER 1				-NEARLY ABSENT < 5% [1]	
SINUCSETY DEVELOPMENT CHANNELIZATION STABLITY MODERATIONS / OTHER HIGH [9]					
→HGRHM →EXCELENT (7) →HONE (8) →HGRHM (3) SNAGGANG →HDPOUNDMENT Channel →HODERATE (3) →RECOVERING (6) →RECOVERING (7)					
→MODEPATE [8] →GOOD [8] →RECOVERED [4] →MODEPATE [2] →RELOCATION →SLAND →LOW [1] →AOR [1] →RECOVERID [4] →MODEPATE [2] →RELOCATION →SLAND →LOW [1] →ROOR [1] →RECOVERID [4] →ODEPATE [2] →RELOCATION →SLAND →LOW [1] →RECOVERY [1] →MODEPATE [2] →RELOCATION →SLAND →MPOUNDED [-1] →MPOUNDED [-1] →MPOUNDED [-1] →MPOUNDED [-1] COMMENTS: →MPOUNDED [-1] →MPOUNDED [-1] BANK EROSION Recover [1] →ONE [1] →ONE [1] →ONE [1] →ONE [1] Performant Per Bank L R Reference [1] Reference [2] Performant Per Bank L R Reference [2] Performant Per Bank Reference [2] Performant Perf					
ALOW [2] PAR [3] PECC VERING [3] ALOW [1] CANOPY REMOVAL LEVEED ANONE [1] POOR [1] PECC VERING [3] ALOW [2] PAR AN SHAPING BANK SHAPING Max 20 POOR [1] PECC VERING [3] ALOW [2] POOR [3] PAR AND BANK END BANK SHAPING BANK SHAPING COMMENTS:					Channel
- HONE [1] - POOR [1] - PECENT OR NO RECOVERY [1] - DOREDGING - DANK SHAPING - COMMENTS: - UMPOUNDED [-1] - ONE SIDE CHANNEL MODIFICATIONS 4.1. RIPARIAN ZONE AND BANK EROSION (check ONE box PER bank or check 2 and AVERAGE per bank) River Right Looking Downstream Regrand 4.1. RIPARIAN ZONE AND BANK EROSION (check ONE box PER bank or check 2 and AVERAGE per bank) River Right Looking Downstream Regrand 1. R. (Per Bank) L. R. (Most Per Bank) L. R. (Per Bank) Regrand - VERY WIDE 1 One (S) - FOREST, SWAMP [3] - CONSERVATION TILLAGE [1] - MODERATE [2] - VERY WIDE 1 One (S) - SHRUB OR OLD FIELD [2] - OURBAN OR NUUSTRUE, ROWCROP [0] - HEAVY / SEVERE [1] - MARK WO 5 - Ion [2] - HEAVEY / SEVERE [1] - MINING / CONSTRUCTION [0] - HEAVY / SEVERE [1] - JARKE NO 8 - Ion [2] - HEAVEY / SEVERE [1] - MINING / CONSTRUCTION [0] - HEAVY / SEVERE [1] - JARKE NO 8 - Ion [2] - HEAVEY / SEVERE [1] - MINING / CONSTRUCTION [0] - HEAVY / SEVERE [1] Max 10 - JARKE NO 8 - Ion [2] - HEAVEY / SEVERE [1] - MINING / CONSTRUCTION [0] - HEAVY / SEVERE [1] Max 10 - JARKE NO 8 - Ion [2] - HEAVE / MAXERAGE COMMENTS: - HEAV					a
RECOVERY [1] -ONE SIDE CHANNEL MODIFICATIONS Image: Control of the state of the s					
					Max 20
COMMENTS: 4.1.RPARIAN ZONE AND BANK EROSION (check ONE box PER bank or check 2 and AVERAGE per bank) River Right Looking Downstream RIPARIAN WIDTH ELOOD PLAIN QUALITY (PAST 100 Meter RIPARIAN) BANK EROSION L R (Per Bank) L R (Most Predominant Per Bank) L R				-ONE SIDE CHANNEL MODIFICATIONS	
4). IRPARIAN ZONE AND BANK EROSION (check ONE box PER bank or check 2 and AVERAGE per bank) River Right Looking Downstream River Right Looking Downstream River Right Looking Downstream RIPARAM MIDTH ELOOD PLAN CUALITY (PAST 100 Meter RIPARIAN) BANK EROSION L R (Per Bank) L R (Per Bank) River Right Looking Downstream Riparian L R (Per Bank) L R (Most Predomicent Per Bank) L R (Per Bank) L R (Per Bank) River Right Looking Downstream Riparian L R (Per Bank) L R (Most Predomicent Per Bank) L R (Per Bank) L R (Per Bank) Riparian L W OPERATE 10 - 50m (3) - 4RSIDENTIAL, PARK, NEW FIELD [1] - CONSERVATION TILLAGE (1) - MONE / LITTLE [3] 1/25 MODERATE 10 - 50m (3) - 4RSIDENTIAL, PARK, NEW FIELD [1] - OPEN PASTURE, ROWCKOP [0] - MONE / LITTLE [3] 1/25 Max 10 - 4NONE / Single - FENCED PASTURE (1) - MINING / CONSTRUCTION [0] - MONE / LITTLE [3] 1/25 Max 10 - 4NONE / Single - FENCED PASTURE (1) - MINING / CONSTRUCTION [0] - MONE / LITTLE [3] 1/25 MAX DEPTH MORPHOLOGY CURRENT VELOCITY (POOLS & RIFFLESI) Check AI That Apply) Pool / Construction [0] - ANONE / LITTLE [3] - Construction [0] - ANONE	COMMENTS:		DED [-1]		
RIPARIAN WIDTH FLOOD PLAIN QUALITY (PAST 100 Meter RIPARIAN) BANK EROSION L R (Per Bank) L R (Most Predominant Per Bank) L R (Per Bank) L R (Per Bank) R (Per Bank) R (Per Bank) R (Per Bank) L R (Per Bank) R					
RIPARIAN WIDTH FLOOD PLAIN QUALITY (PAST 100 Meter RIPARIAN) BANK EROSION L R (Per Bank) L R (Most Predominant Per Bank) L R (Per Bank) L R (Per Bank) R (Per Bank) R (Per Bank) R (Per Bank) L R (Per Bank) R	4) RIPARIAN ZONE AND BANK F	ROSION (check ONE box PER bank or che	ck 2 and AVERAGE per bank)	Diver Picht Looking Downstream	
L R (Most Predominant Per Bank) L R L R (Par Bank) R(par Ba				K 0 0	
WDE > 100m [5] FOREST, SWAMP [3] Generation of the log					Pinarian
WIDE > 50m [4] SHRUB OR OLD FIELD [2] URBAN OR INDUSTRIAL [0] MODERATE [2] MODERATE 10 - 50m [3] RESIDENTIAL, PARK, NEW FIELD [1] OPEN PASTURE, ROWCROP [0] HEAVY / SEVERE [1] Max 10 WIDE > 50m [4] RESIDENTIAL, PARK, NEW FIELD [1] OPEN PASTURE, ROWCROP [0] HEAVY / SEVERE [1] Wax 10 WIDE > 50m [4] RESIDENTIAL, PARK, NEW FIELD [1] OPEN PASTURE, ROWCROP [0] HEAVY / SEVERE [1] Wax 10 WARROW 5 - 10m [2] FENCED PASTURE [1] OHINING / CONSTRUCTION [0] HEAVY / SEVERE [1] Wax 10 WAX DEPTH MORPHOLOGY CURRENT VELOCITY (POOLS & RIFFLESI) (Check 1 ONLY] (Check 1 or 2 & AVERAGE) (Check AII That Apply) Pool - 10m [4] -POOL WIDTH > RIFFLE WIDTH [2] -EDDIES [1] -TORRENTIAL [-1] Current - 0.01m [4] -POOL WIDTH < RIFFLE WIDTH [2]					
^(A) MODERATE 10 - 50m [3] ^(A) - RESIDENTIAL, PARK, NEW FIELD [1] ^(A) - OPEN PASTURE, ROWCROP [0] ^(A) + HEAVY / SEVERE [1] ^(A) ANARROW 5 - 10m [2] ^(A) - FENCED PASTURE [1] ^(A) - MINING / CONSTRUCTION [0] ^(A) - VERY MARROW - 5m [1] ^(A) - VERY FAST [1]	∠			0]	1,25
NARROW 5 - 10m [2] FENCED PASTURE [1] MINING / CONSTRUCTION [0] VERY NARROW < 5m [1]					Max 10
□ -VERY NARROW < 5m [1]					Max To
S.I. POOL / GLIDE AND RIFFLE / RUN QUALITY MORPHOLOGY CURRENT VELOCITY (POOLS & RIFFLES!) (Check 1 ONLYI) (Check 1 or 2 & AVERAGE) (Check All Thal Apply) Pool / - 1m [6] - POOL WIDTH > RIFFLE WIDTH [2] - EDDIES [1] - TORRENTIAL [-1] Current - 0.7m [4] - POOL WIDTH > RIFFLE WIDTH [2] - EDDIES [1] - INTERNITTENT [-2]				- 1-1	
S.I. POOL / GLIDE AND RIFFLE / RUN QUALITY MORPHOLOGY CURRENT VELOCITY (POOLS & RIFFLES!) (Check 1 ONLYI) (Check 1 or 2 & AVERAGE) (Check All Thal Apply) Pool / - 1m [6] - POOL WIDTH > RIFFLE WIDTH [2] - EDDIES [1] - TORRENTIAL [-1] Current - 0.7m [4] - POOL WIDTH > RIFFLE WIDTH [2] - EDDIES [1] - INTERNITTENT [-2]	-NONE [0]	COMMENTS:	· · · · · · · · · · · · · · · · · · ·		
MAX_DEPTH MORPHOLOGY CURRENT VELOCITY (POOLS & RIFFLES)) (Check 1 ONLY) (Check 1 or 2 & AVERAGE) (Check All That Apply) Pool -1m [6] -POOL WIDTH > RIFFLE WIDTH [2] -EDDLES [1] -TORRENTIAL [-1] Current -0.7m [4] -POOL WIDTH = RIFFLE WIDTH [1] -FAST [1] -INTERSTITIAL [-1] [1] -0.4 to 0.7m [2] -POOL WIDTH < RIFFLE WIDTH [0]					
Check 1 ONL YI (Check 1 or 2 & AVERAGE) (Check All Thal Apply) Pool / - 1m [6] - POOL WIDTH > RIFFLE WIDTH [2] - EDDIES [1] - TORRENTIAL [-1] Current - 0.7m [4] - POOL WIDTH = RIFFLE WIDTH [1] - FAST [1] - INTERSTITIAL [-1] [1] - 0.4 to 0.7m [2] - POOL WIDTH = RIFFLE WIDTH [0] - MODERATE [1] - INTERMITTENT [-2] [1] - 0.4 to 0.7m [2] - POOL WIDTH < RIFFLE WIDTH [0]	5.) POOL / GLIDE AND RIFFLE / R	UN QUALITY			
- 1m (6) - POOL WIDTH > RIFFLE WIDTH [2] - EDDIES [1] - TORRENTIAL [-1] - 0.7m [4] - POOL WIDTH = RIFFLE WIDTH [1] - FAST [1] - INTERSTITIAL [-1] - 0.4 to 0.7m [2] - POOL WIDTH < RIFFLE WIDTH [0]	MAX, DEPTH	MORPHOLOGY	CURRENT VELOCITY	((POOLS & RIFFLES!)	
- 1m [6] - POOL WIDTH > RIFFLE WIDTH [2] - EDDIES [1] - TORRENTIAL [-1] - 0.7m [4] - POOL WIDTH = RIFFLE WIDTH [1] - FAST [1] - INTERSTITIAL [-1] - 0.4 to 0.7m [2] - POOL WIDTH < RIFFLE WIDTH [0]		(Check 1 or 2 & AVERAGE)	(Check All	That Apply)	Pool /
□ -0.7m [4] □ -POOL WIDTH = RIFFLE WIDTH [1] □ -FAST [1] □ -INTERSTITIAL [-1] □ -0.4 to 0.7m [2] □ -POOL WIDTH < RIFFLE WIDTH [0]	- 1m [6]	-POOL WIDTH > RIFFLE WID	TH [2]	-TORRENTIAL [-1]	
□ -0.2 to 0.4 m [1] □ -IMPOUNDED [-1] □ SLOW [1] □ -VERY FAST [1] Max 12 □ -<0.2 m [POOL = 0]	🗔 - 0.7m [4]			-INTERSTITIAL [-1]	a
- < 0.2m [POOL = 0}	- 0.4 to 0.7m [2]	-POOL WIDTH < RIFFLE WID	TH [0]		11
COMMENTS: CHECK ONE OR CHECK 2 AND ADVERAGE RIFFLE / RUN EMBEDDEDNESS RIFFLE / RUN EMBEDDEDNESS		- IMPOUNDED [-1]	-SLOW [1]	-VERY FAST [1]	Max 12
CHECK ONE OR CHECK 2 AND ADVERAGE Riffle / Run EMBEDDEDNESS Riffle / Run DEPTH RIFLE / RUN SUBSTRATE RIFFLE / RUN EMBEDDEDNESS Diffle / Run	- < 0.2m [POOL = 0]		• -NONE [-1]		
RIFFLE DEPTH RUN DEPTH RIFFLE / RUN SUBSTRATE RIFFLE / RUN EMBEDDEDNESS -*Best Areas > 10cm [2] - MAX > 50 cm [2] - STABLE (e.g., Cobble, Boulder) [2] - NONE [2] - NONE [2] -*Best Areas > 10cm [1] - MAX < 50 cm [1]	COMMENTS:				
RIFFLE DEPTH RUN DEPTH RIFFLE / RUN SUBSTRATE RIFFLE / RUN EMBEDDEDNESS -*Best Areas > 10cm [2] - MAX > 50 cm [2] - STABLE (e.g., Cobble, Boulder) [2] - NONE [2] - NONE [2] -*Best Areas > 10cm [1] - MAX < 50 cm [1]					
-*Best Areas > 10cm [2] - MAX > 50 cm [2] - STABLE (e.g., Cobble, Boulder) [2] - NONE [2] - NONE [2] - Best Areas > 10cm [1] - MAX > 50 cm [2] - STABLE (e.g., Large Gravel) [1] - LOW [1] Max 8 - Best Areas < 5cm [0]					Riffle / Rur
Best Areas 5 - 10cm [1] - MAX < 50 cm [1] - MOD, STABLE (e.g., Large Gravel) [1] - LOW [1] - LOW [1] - Max 8 Best Areas < 5cm [0] - UNSTABLE (Fine Gravel, Sand) [0] - MODERATE [0] - MODERATE [0] - State and the state					\wedge
-Best Areas < 5cm [0] -UNSTABLE (Fine Gravel, Sand) [0] -MODERATE [0] -NO RIFFLE but RUNS present [0] -NO RIFFLE / NO RUN [Metric = 0] COMMENTS: 6.) GRADIENT (ft / mi): 2.19 DRAINAGE AREA (sq.mi.): 323.96 % POOL: % GLIDE: % Gradent Score from Table 2 of Users Manual % DIFETE F. % GLIDE: % GLIDE		••			U
-NO RIFFLE but RUNS present [0] -EXTENSIVE [-1] Gradient Gradient Gradient Gradient Gradient Gradient (fi / mi): 2.19 DRAINAGE AREA (sq.mi.): 32.3.96 % POOL: % GLIDE: Gradient Score from Table 2 of Users Manual					Max 8
NO RIFFLE / NO RUN [Metric = 0] COMMENTS: 6.) GRADIENT (ft / mi): 2.19 DRAINAGE AREA (sq.mi.): 3.2.3.96 % POOL: % GLIDE: 6. Gradient Score from Table 2 of Users Manual			-UNSTABLE (Fine Gravel, Sand) [0]		
COMMENTS: 6.) GRADIENT (fl / mi): 2.19 DRAINAGE AREA (sq.mi.): 3.2.3.96 % POOL: % GLIDE: Gradient Score from Table 2 of Users Manual		••		L -EXTENSIVE [-1]	Gradient
6.) GRADIENT (fl / mi): 2.19 DRAINAGE AREA (sq.mi.): 323.96 % POOL: % GLIDE: Gradient Score from Table 2 of Users Manual		tric = 0]			
Gradient Score from Table 2 of Users Manual	. 0		<u> </u>		
Gradient Score from Table 2 of Users Manual	6.) GRADIENT (ft / mi): 2.19	DRAINAGE AREA (sq.mi.): 323.	% POOL: % GLIDE:		8
	*Best areas must be large enough to suppo	rt a population of riffle-obligate species	% RIFFLE: % RUN:		Max 10

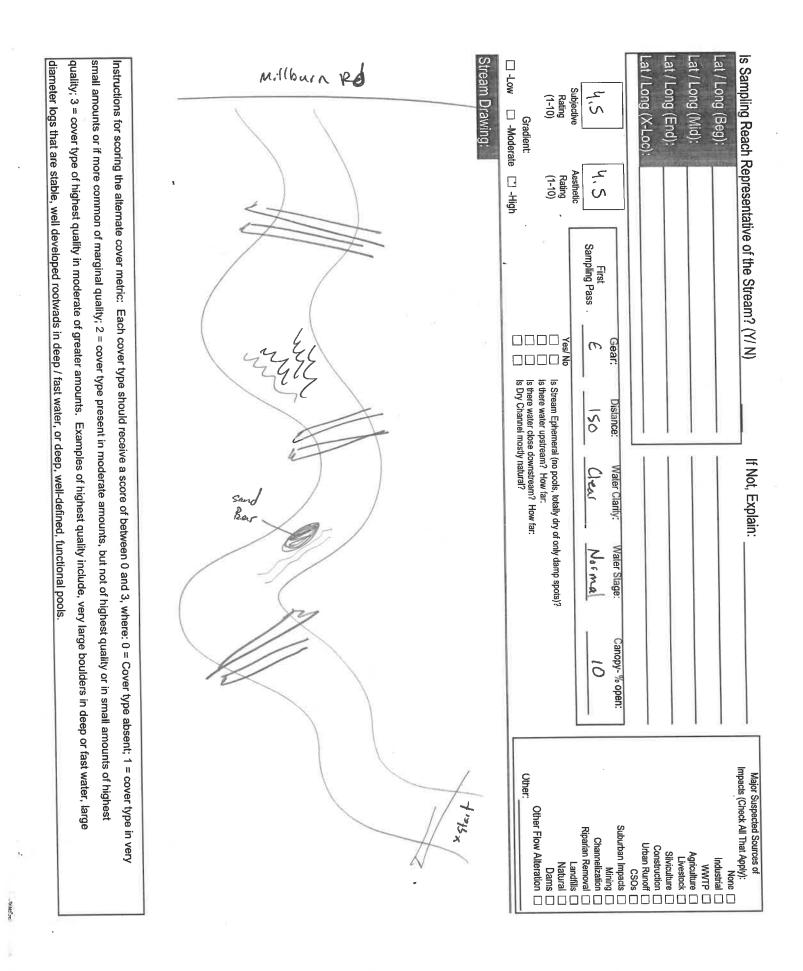
4


•


a alling Bidge

Qualitative Ha	abitat Evaluation Index Field Sheet QHEI Score:	71
River Code: 95-656 RM: 71.7 Str	ream: Das Plaines River,	
Site Code: 16-1 Project Code: DEWUZZ Loc	estion: Dif & Palatine E	
	titude: 42, 11399 Longitude: -87, 89923	
1.) SUBSTRATE (Check ONLY Two Substrate TYPE BOXES; Estimate % percent TYPE POOL RIFFLE POOL □ -BLDR/SLBS [10] □ □ GRAVEL [7] \$		
-Lg BOULD [10]		Substrate
	-TILLS [1] -SILT MODERATE [-1]	Supsuale
		15
	WETLANDS [0] - SILT NORMAL [0]	
	<u>≪</u> HARDPAN [0] SILT FREE [1]	Max 20
	MODERATE [-1]	
NUMBER OF SUBSTRATE TYPES: -4 or More [2]		
(High Quality Only, Score 5 or >) -3 or Less [0]	□ -SHALE [-1] □ -NONE [1]	
COMMENTE	-COAL FINES [-2]	
COMMENTS:		
2.) INSTREAM COVER (Give each cover type a score of 0 to 3; see back for instruct		
(Structure) TYPE: Score All That Occur VINDERCUT BANKS [1] 3 POOLS > 70 cm [2]	check 2 and AVERAGE)	Cover
	CXBOWS, BACKWATERS [1] □ -EXTENSIVE > 75% [11] 3 AQUATIC MACROPHYTES [1] -MODERATE 25 - 75% [7]	16
ROOTMATS [1]		Max 20
COMMENTS:	-NEARLY ABSENT < 5% [1]	
3.) CHANNEL MORPHOLOGY: (Check ONLY one PER Category OR check 2 and)	AV/ERAGE)	
SINUGSITY. DEVELOPMENT CHANNELIZATION		
HIGH [4] -EXCELLENT [7] -NONE [6]		Channel
-MODERATE [3] -GOOD [5] -RECOVERED		
-RECOVERING		12
-NONE [1] -POOR [1] -RECENT OR I		Max 20
RECOVERY [1		1007 20
-impounded		
COMMENTS:		
4.) <u>RIPARIAN ZONE AND BANK EROSION</u> (check ONE box PER bank or check 2 <u>RIPARIAN WIDTH</u> <u>FLOOD PLAIN QUALITY (</u> L R (Per Bank) L R (Most Predominant Per Bank)	(PAST 100 Meter RIPARIAN) BANK EROSION	Riparian
2 - VERY WIDE > 100m [5] 2 - FOREST, SWAMP [3]	-CONSERVATION TILLAGE [1] -NONE / LITTLE [3]	
	URBAN OR INDUSTRIAL [0]	10
ODERATE 10 - 50m [3] RESIDENTIAL, PARK, NEW FIELD	D [1] -OPEN PASTURE, ROWCROP [0] -HEAVY / SEVERE [1]	Max 10
-NARROW 5 - 10m [2] -FENCED PASTURE [1]	-MINING / CONSTRUCTION [0]	
-VERY NARROW < 5m [1]		
COMMENTS:		
5.) POOL / GLIDE AND RIFFLE / RUN QUALITY MAX, DEPTH MORPHOLOGY	CURRENT VELOCITY (POOLS & RIFFLES!)	•
(Check 1 ONLY!) (Check 1 or 2 & AVERAGE)	(Check All That Apply)	Pool /
- 1m [6] -POOL WIDTH > RIFFLE WIDTH [2		Current
-0.7m [4] -POOL WIDTH = RIFFLE WIDTH [1		α
- 0.4 to 0.7m [2] POOL WIDTH < RIFFLE WIDTH [0	0] 🔎 -MODERATE [1] 🔲 -INTERMITTENT [-2]	8
- 0.2 to 0.4m [1] -IMPOUNDED [-1]	SLOW [1] -VERY FAST [1]	Max 12
- < 0.2m [POOL = 0]	NONE [-1]	
COMMENTS:		
		ffle / Run
-	FLE / RUN SUBSTRATE RIFFLE / RUN EMBEDDEDNESS	2
	ABLE (e.g., Cobble, Boulder) [2]	\mathcal{P}
·	DD. STABLE (e.g., Large Gravel) [1]	Max 8
-NO RIFFLE but RUNS present [0]		Sumalie 4
-NO RIFFLE / NO RUN [Metric = 0]		Gradient
COMMENTS:	Г	
6.) GRADIENT (ft / mi): 2.13 DRAINAGE AREA (sq.mi.): 358.7	% POOL: % GLIDE:	8
	Gradieni Score from Table 2 of Users Manual	
Best areas must be large enough to support a population of riffle-obligate species	% RIFFLE: % RUN: besed on gradient and drainage area.	Max 10

-


Qualitative Habitat Evaluation Index Field Sheet QHEI Score	e: 83.17
River Code: 95-995 RM; 1,71 Stream: Mill Cryele	
site Code: 11-2 Project Code: QUUZZLocation: 2. US Mil Creek WWT	
Date: 627-2027 Scorer: MAS Latitude: 42,42115 Longitude: -87.95678	-
1.) SUBSTRATE (Check ONLY Two Substrate TYPE BOXES; Estimate % percent	_
C -Lg BOULD [10] SAND [6] HIMESTONE [1] SILT: - SILT HEAVY [-2]	Substrate
-BOULDER [9] D -BEDROCK [5]TILLS [1] - SILT MODERATE [-1]	
COBBLE [8]	16
	Max 20
NUMBER OF SUBSTRATE TYPES: 4 or More [2] -LACUSTRINE [0] -NORMAL [0]	
(High Quality Only, Score 5 or >) 2 -3 or Less [0] -SHALE [-1] -NONE [1]	
COMMENTS:	
2.) INSTREAM COVER (Give each cover type a score of 0 to 3; see back for instructions) AMOUNT: (Check ONLY one or	-
(Structure) TYPE: Score All That Occur check 2 and AVERAGE)	Cover
OVERHANGING VEGETATION [1] ROOTWADS [1]O_AQUATIC MACROPHYTES [1]MODERATE 25 - 75% [7]	16
3 SHALLOWS (IN SLOW WATER) [1] / BOULDERS [1] 2 LOGS OR WOODY DEBRIS [1] - SPARSE 5 - 25% [3]	Max 20
ROOTMATS [1]NEARLY ABSENT < 5% [1]	
COMMENTS:	
3.) CHANNEL MORPHOLOGY: (Check ONLY one PER Category OR check 2 and AVERAGE)	
SINUOSITY DEVELOPMENT CHANNELIZATION STABILITY MODIFICATIONS / OTHER	
-IMPOUNDMENT	Channel
C -MODERATE [3] Z -GOOD [5] □ -RECOVERED [4] C -RELOCATION □ -ISLAND	6
□ -LOW [2] □ -FAIR [3] □ -RECOVERING [3] □ -LOW [1] □ -CANOPY REMOVAL □ -LEVEED	12.
□ -NONE [1] □ -POOR [1] □ -RECENT OR NO □-DREDGING □ -BANK SHAPING	Max 20
RECOVERY [1] Q-ONE SIDE CHANNEL MODIFICATIONS	
-IMPOUNDED [-1]	
4.] RIPARIAN ZONE AND BANK EROSION (check ONE box PER bank or check 2 and AVERAGE per bank) River Right Looking Downstream	
RIPARIAN WIDTH FLOOD PLAIN QUALITY (PAST 100 Meter RIPARIAN) BANK EROSION	
L R (Per Bank) L R (Most Predominant Per Bank) L R L R (Per Bank)	Riparian
Image: Construction of the second	0.25
□ □ -WIDE > 50m [4] □ □ -SHRUB OR OLD FIELD [2] □ □ -URBAN OR INDUSTRIAL [0] □ -MODERATE [2]	9.5
	Max 10
ONSTRUCTION [0] ONSTRUCTION [0]	
COMMENTS:	-
5.) POOL/GLIDE AND RIFFLE / RUN QUALITY	
MAX. DEPTH MORPHOLOGY CURRENT VELOCITY (POOLS & RIFFLES!)	-
(Check 1 ONLY) (Check 1 or 2 & AVERAGE) (Check All That Apply)	Pool /
	Current
	9
□ -0.2 to 0.4m [1] □ -IMPOUNDED [-1] □ -VERY FAST [1]	Max 12;
□ - < 0.2m [POOL = 0] □ -NONE [-1]	
COMMENTS:	-
CHECK ONE OR CHECK 2 AND ADVERAGE	
	Riffle / Run
	8
	Max 8
	And
-NO RIFLE / NO RUN [Metric = 0]	Gradient
COMMENTS:	lJ
	8
Gradient Store from Table 2 of I leave Manua	
Best areas must be large enough to support a population of rifle-obligate species % RIFFLE: % RUN: besed on gradient and drainage area.	Max 10

QUALITATIVE Habitat Evaluation Index Field Sheet QHEI Sco	re: 50
River Code: 95-996 RM: 1.10 Stream: North Mill Creek	···
Date: <u>la - 27 - 2022</u> Scorer: <u>MA-5</u> Latitude: <u>42.42.346</u> Longitude: <u>-87.99722</u>	
1.) SUBSTRATE (Check ONLY Two Substrate TYPE BOXES; Estimate % percent	
TYPE POOL RIFFLE POOL RIFFLE SUBSTRATE ORIGIN SUBSTRATE QUALITY	
Check ONE (OR 2 & AVERAGE)	
	Substrate
	6
-+HARDPAN [4]	Max 20
C-MUCK [2] C -SILT [2] SANDSTONE [0] EMBEDDED EXTENSIVE [-2]	
(High Quality Only, Score 5 or >)	
CONNENTE:	
2.) INSTREAM COVER (Give each cover type a score of 0 to 3; see back for instructions) AMOUNT: (Check ONLY one or	
(Structure) TYPE: Score All That Occur check 2 and AVERAGE)	Cover
UNDERCUT BANKS [1] POOLS > 70 cm [2] OXBOWS, BACKWATERS [1] EXTENSIVE > 75% [11]	
OVERHANGING VEGETATION [1]ROOTWADS [1]AQUATIC MACROPHYTES [1]MODERATE 25 - 75% [7]	15
3 SHALLOWS (IN SLOW WATER) [1] 1 BOULDERS [1] 3 LOGS OR WOODY DEBRIS [1] 5 - 25% [3]	Max 20
ROOTMATS [1]NEARLY ABSENT < 5% [1]	
COMMENTS:	
3.) CHANNEL MORPHOLOGY: (Check ONLY one PER Category OR check 2 and AVERAGE)	
SINUOSITY DEVELOPMENT CHANNELIZATION STABILTIY MODIFICATIONS / OTHER	
	Channel
	Channel
	10
	10
-NONE [1] -POOR [1] -RECENT OR NO -BANK SHAPING -BANK SHAPING -BANK SHAPING	Max 20
COMMENTS:	
het be	
4.) RIPARIAN ZONE AND BANK EROSION (check ONE box PER bank or check 2 and AVERAGE per bank) River Right Looking Downstream	
RIPARIAN WIDTH FLOOD PLAIN QUALITY (PAST 100 Meter RIPARIAN) BANK EROSION	
LR (Per Bank) LR (Per Bank) LR LR (Per Bank)	Riparian
-VERY.WIDE > 100m [5] -FOREST, SWAMP [3] -CONSERVATION TILLAGE [1] -NONE / LITTLE [3]	
UWIDE > 50m [4]SHRUB OR OLD FIELD [2]URBAN OR INDUSTRIAL [0] Z ZMODERATE [2]	5
🖉 🖉 -MODERATE 10 - 50m [3] 🗌 🖂 -RESIDENTIAL, PARK, NEW FIELD [1] 🖉 🔁 -OPEN PASTURE, ROWCROP [0] 👘 📋 -HEAVY / SEVERE [1]	Max 10
	max to
□ -VERY NARROW < 5m [1]	
5.) POOL / GLIDE AND RIFFLE / RUN QUALITY	
Check 1 ONLYI) (Check 1 or 2 & AVERAGE) (Check All That Apply)	Pool /
- 1m [6] -POOL WIDTH > RIFFLE WIDTH [2] -FDDIES [1] -TORRENTIAL [-1]	Current
□ -0.7m [4] □ -POOL WIDTH ± RIFFLE WIDTH [1] □ -FAST [1] □ -INTERSTITIAL [-1]	1
🔎 - 0.4 to 0.7m [2] 🛛 POOL WIDTH < RIFFLE WIDTH [0] 📝 -MODERATE [1] 🖓 -INTERMITTENT [-2]	0
□ -0.2 to 0.4m [1] □ -IMPOUNDED [-1] □ -VERY FAST [1]	Max 12
□ -< 0.2m [POOL = 0] □ -NONE [-1]	
COMMENTS:	
	-
CHECK ONE OR CHECK 2 AND ADVERAGE	Riffle / Run
RIFFLE DEPTH RIFFLE / RUN EMBEDDEDNESS	Tune / Full
	2
	Max 8
-NO RIFFLE but RUNS present [0]	Gradient
-NO RIFFLE / NO RUN [Metric = 0]	
COMMENTS:	
6.) GRADIENT (ft / mi): 5.24 DRAINAGE AREA (sq.mi.): 31.93 % POOL: % GLIDE:	6
*Best areas must be large enough to support a population of riffle-obligate species % RIFFLE: % RUN: based or gradient and drainage area.	
	Max 10

.

...

Biodiversity	Qualitative	Habitat Ev	aluation Index	Field She	eet	QHEI Score: 28, ²	5
River Code: 95-996	RM: 11.3	Stream: No	the Mill Cree	c			=
Site Code: 10 - 7	Project Code: DRWW22		Edwards Rd				
Date: 6-27-2022.			48087	Longitude:	-88.01184		
1.) SUBSTRATE (Check ONLY Two S	ubstrate TYPE BOXES; Estimate % per	cent					
TYPE POOL	RIFFLE	POOL RIFFLE	SUBSTRATE ORIGIN		SUBSTRATE QUALITY		
BLDR/SLBS [10]	GRAVEL [7]	20	Check ONE (OR 2 & AVE	RAGE	Check ONE (OR 2 & AVERAGE)		
		<u>~</u>		SILT:	SILT HEAVY [-2]	Cubeler	nata
-BOULDER [9]				0161.	SILT MODERATE [-1]	Substra	ale
			_ ,			2	
□ □ □ +ARDPAN [4]			WETLANDS [0]		SILT NORMAL [0]		
			HARDPAN [0]		SILT FREE [1]	Max 2	20
Z -MUCK [2] ×	🗆 🗀 -SILT [2]	<u> </u>		EMBEDDED	-EXTENSIVE [-2]		
				NESS:			
NUMBER OF SUBSTRATE TYPES:	-4 or More [2]		-LACUSTRINE [0]		-NORMAL [0]		
(High Quality Only, Score 5 or >)	📈 -3 or Less [0]		SHALE [-1]		-NONE [1]		
COMMENTS:			-COAL FINES [-2]				
	ver type a score of 0 to 3; see back for in	structions)			AMOUNT: (Check ONLY on		
(Structure)	TYPE: Score All That Occur	anucionaj			check 2 and AVERAGE)		
UNDERCUT BANKS [1]	POOLS > 70 cm [2]	O OXBOWS	, BACKWATERS [1]		-EXTENSIVE > 75% [11]	Cover	31
/ OVERHANGING VEGETATION			MACROPHYTES [1]		-MODERATE 25 - 75% [7]	9	
3 SHALLOWS (IN SLOW WATER			WOODY DEBRIS [1]		-SPARSE 5 - 25% [3]	Max 2	20
/ ROOTMATS [1]					-NEARLY ABSENT < 5% [1]	Max 2	-0
COMMENTS:							
3.) CHANNEL MORPHOLOGY: (Chec	k ONLY one PER Category OR check 2	and AVERAGE)					
	ELOPMENT CHANNELIZA	-	ABILTIY	MODIFICATIO	ONS / OTHER		
🗔 -HIGH [4]	EXCELLENT [7] -NONE [6]	-HIGH [3]	-SNAGG	ING -IMPOUNDA	MENT Channe	nel
	GOOD [5] .RECOVE	RED [4]	-MODERATE [2]	-RELOC	ATION -ISLAND	1	
🗆 -LOW [2]	FAIR [3] -RECOVE	RING [3]	🛛 -LOW [1]	CANOP	Y REMOVAL 🗌 -LEVEED	10	
-NONE [1]	POOR [1] -RECENT	OR NO		-DREDG	ING 🗌 -BANK SHA	PING Max 2	20
,	RECOVE	RY [1]		-ONE SI	DE CHANNEL MODIFICATIONS		
		DED [-1]					
COMMENTS:							
					ht Looking Downstream		
RIPARIAN WIDTH	SION (check ONE box PER bank or che			NOP RIVER RIC			
L R (Per Bank)	FLOOD PLAIN QUAI				BANK EROSION	D 'i-	
	-FOREST, SWAMP [3]		-CONSERVATION TILLA	GE [1]	L R (Per Bank)	Riparia	
□ -WIDE > 50m [4]			URBAN OR INDUSTRIA			6.5	>
-MODERATE 10 - 50m [3]	-RESIDENTIAL, PARK, NEW					[1] Max 10	10
			-MINING / CONSTRUCTI			[1] Max II	10
	COMMENTS:						
5. POOL / GLIDE AND RIFFLE / RUN	QUALITY						
MAX. DEPTH	MORPHOLOGY		CURRENT VELOCI	TY (POOLS & F	(IFFLES!)		
(Check 1 ONLY!)	(Check 1 or 2 & AVERAGE)		(Check	All That Apply)		Pool /	Ł
- 1m [6]	-POOL WIDTH > RIFFLE WID	••	-EDDIES [1]	-TORRE		Curren	nt
🗀 - 0.7m [4]	-Pool width = Riffle wid		🖂 -FAST [1]	-INTERS		1	
- 0.4 to 0.7m [2]	-POOL WIDTH < RIFFLE WID	TH [0] _	-MODERATE [1]			1	
- 0.2 to 0.4m [1]	-IMPOUNDED [-1]		-SLOW [1]	-VERY F	AST [1]	Max 12	12
- < 0.2m [POOL = 0]			-NONE [-1]				
COMMENTS:							
• • • • • • • • • • • • • • • • • • •		CHECK 2 AND AD	/ERACE			Ditta / D	D
RIFFLE DEPTH	RUN DEPTH	RIFFLE / RUN SUB			EMBEDDEDNESS	Riffle / R	KUN
-*Best Areas > 10cm [2]		-STABLE (e.g., Cobi				0	
Best Areas 5 - 10cm [1]		-MOD. STABLE (e.g.		-LOW [1]	•	Max 8	8
-Best Areas < 5cm [0]	· · · · · · · · · · · · · · · · · · ·	-UNSTABLE (Fine G				Max 0	~
-NO RIFFLE but RUNS present						Gradier	ant
-NO RIFFLE / NO RUN [Metric	••					0.00101	
COMMENTS:						I	
6.) GRADIENT (ft / mi): 2.6	DRAINAGE AREA (sq.mi.): 19.2	3 % POOL	: % GLID	E:		4	
*Best areas must be large enough to support a p	population of riffle-obligate species	% RIFFL			Gradient Score from based on gradient a	n Table 2 of Users Manual And drainage area. Max 10	 10
							-

Instructions for scoring the alternate cover metric: small amounts or if more common of marginal qua quality; 3 = cover type of highest quality in modera diameter logs that are stable, well developed rooty	2 End	Is Sampling Reach Representative of the Stream? (Y/N) Lat / Long (Mid): Lat / Long (End): Lat / Long (End): Lat / Long (X-Loc): Subjective Rating (1-10) Gradient: - Low - Moderate - High
Each cover type should receive a score of between 0 and 3, lity; 2 = cover type present in moderate amounts, but not of h te of greater amounts. Examples of highest quality include, v vads in deep / fast water, or deep, well-defined, functional po	Man M Hair Algar	ive of the Stream? (Y/ N) If Not, Explain: First Gear: Dislance: Sampling Pass C Icc Uctw.al Ves/No Icc Icc Uctw.al Ico Is there water upstream? How far: Is there water upstream? How far: Is bry Channel mostly natural? How far:
where: 0 = Cover type absent; 1 = cover type in very ighest quality or in small amounts of highest 'ery large boulders in deep or fast water, large ols.	start Edward ? Rd	Major Suspected Sources of Impacts (Check All That Apply): None Industrial WMTP Agriculture Urban Runoff Construction Urban Runoff Construction Urban Runoff Channelization Riparian Remova Dams Dams Dams Other Flow Alteration

.

.

APPENDIX D

D-1: FIT Factors for Deriving Primary, Secondary, and Tertiary Causes of Impairment

Appendix D-1: Development of FIT Factors for Deriving Primary, Secondary, and Tertiary Causes of Impairment

The NE IL IPS thresholds were developed for the primary nutrient and nutrient-related parameters based on grab sample data. The thresholds were based on relationships between that data and stressor-specific sensitive fish species and macroinvertebrate taxa. The relationship between the sensitive species/taxa with the fIBI and mIBI supported benchmarking these thresholds to the General Use criteria and an "Excellent" level of biological performance.

The FIT weighting score influences the categories of narrative condition (i.e., very poor, poor, or fair) each cause of impairment is placed. Each stressor is ranked from 0.1 (excellent) to 10 (very poor) based on the respective relationships with the number of stressor-sensitive fish species

Appendix Table D-1. FIT weighting scores based on FIT coefficients.
FIT (< 0.10) X 1;
FIT (> 0.10 - <0.3) X 0.8
FIT (> 0.30 - < 1.0) X 0.6
FIT (> 1.00 - < 3.0) X 0.5
FIT (> 3.00 - < 10.0) X 0.2
FIT (> 10 0) X 0.1

or macroinvertebrate taxa as the response variable with a particular stressor. Where the association is very strong (i.e., FIT value < 0.1) it means there were few outliers and a stronger power of prediction. The weighting factor is 1 and stressors that scored as very poor are still considered to be predictive of very poor biological assemblages. As the FIT value increases (i.e., >0.1 to 0.3) it signals increased variability (more outliers are observed). The weighting factor declines to 0.8 and a stressor value of 9 (very poor)

would be down weighted to a score of 7.2 (poor) because the stress:response relationship had more outliers. While the ability to distinguish poor vs. very poor assemblages is reduced, it still reflects a severe impairment. A FIT value of >0.3-1 indicates a weaker causative relationship and has lower weighting factor (X 0.6). This would change a stressor score of 9 (very poor) to a score of 5.4 (fair). Parameters with FIT vales of >3 were not used to identify causes of impairment. A summary of FIT values for 69 variables is in Appendix Table E-2.

Stressor relationships can become stronger as more data is added to the IPS databases hence the need for continued monitoring. Some parameters that have weak FIT scores are because of a lack of data along a complete stressor gradient. For example, there are fewer data points at excellent biological sites for parameters such as sediment PAHs and sediment metals. This weakens the FIT values for the excellent narrative range thus in these situations only a good narrative threshold is derived. There are other important variables (e.g., benthic chlorophyll a) where the current datasets are insufficient to develop a ranking thus highlighting the need to build up the dataset.

The severity of effect of some stressors (e.g., FIT Scores <0.1) could possibly mask the effects of other stressors. As more data is collected and as some of the more prevalent stressors are abated, the influence of masked stressors may become more evident. As such, the FIT values and scores could change in future iterations of the IPS. More data will also improve the accuracy of assigning species and taxa as sensitive or tolerant to a particular stressor.

Appendix Table D-2. FIT values based on the deviation between ambient stressor rank vs. predicted stressor rank based on fish species or macroinvertebrate taxa for streams in the NE IL IPS study area. The algorithm for FIT calculation is summarized in the text. The cell shading is related to FIT weighting coefficients: □ 1.0; □ 0.8; □ 0.6; □ 0.5; □ 0.2.

			FIT
Stressor	FIT Value	Stressor	Value
Impervious Land Use (500m)	0.01	Copper (Wat.)	1.75
QHEI Embeddedness Score	0.03	Lead (Wat.)	2.11
Urban Land Uses (WS)	0.03	Zinc (Sed.)	2.22
QHEI Overall Score	0.04	Benzo(g,h,i)perylene	2.32
QHEI Substrate Score	0.04	Indeno(1,2,3-cd)pyrene (Sed.)	2.41
QHEI Good Attributes	0.04	Copper (Sed.)	2.42
Total Phosphorus	0.04	Benzo(b)fluoranthene (Sed.)	2.51
Impervious Land Use (30m)	0.04	Turbidity	2.61
Impervious Land Use (30m Clipped)	0.04	Nickel (Sed.)	2.67
Conductivity	0.05	Manganese (Wat.)	2.74
QHEI Channel Score	0.07	Benzo(a)pyrene (Sed.)	2.85
QHEI Silt Cover Score	0.07	Pyrene (Sed.)	2.85
Developed Land Use (WS)	0.07	Voluble Suspended Solids	2.81
Minimum Dissolved Oxygen	0.10	Lead (Sed.)	3.01
Total Dissolved Solids	0.10	Nickel (Wat.)	3.26
Impervious Land Use (WS)	0.10	Benzo(a)anthracene (Sed.)	3.48
Hydro-QHEI Depth Score	0.11	Chrysene (Sed.)	3.51
QHEI Poor Habitat Attributes	0.12	Fluoranthene (Sed.)	3.91
Hydro-QHEI Overall Score	0.13	Strontium (Sed.)	4.44
Zinc (Wat.)	0.13	Dibenz(a,h)anthracene (Sed.)	4.57
Hydro-QHEI Current Score	0.14	Agricultural Land Use (WS)	4.82
TKN	0.14	Anthracene (Sed.)	5.10
QHEI Pool Score	0.15	Phenanthrene (Sed.)	5.10
Heavy Urban Land Use (WS)	0.17	Arsenic (Sed.)	6.21
Chloride	0.17	Chromium (Sed.)	6.29
QHEI Cover Score	0.17	Sulfate	6.49
BOD (5-Day)	0.21	Manganese (Sed.)	7.08
QHEI Riffle Score	0.27	Silver (Sed.)	7.11
Total Ammonia	0.28	Aluminum (Sed.)	8.26
Nitrate	0.29	Barium (Sed.)	8.88
Sodium	0.29	Arsenic (Wat.)	9.19
QHEI Gradient Score	0.31	Potassium (Wat.)	10.13
Total Suspended Solids	0.32	Cadmium (Sed.)	11.0
Maximum Dissolved Oxygen	0.94		
Cadmium (Wat.)	0.93		
Arsenic (Sed.)	1.26		

APPENDIX E

E-1: DRWW Weighted and Unweighted Causes of Impairment

Causal Agents	Very Poor	VP%	VP Wtd.	VP Wtd.%	Poor	Poor%	Poor Wtd.	Poor Wtd.%	Fair	Fair%	Fair Wtd.%	Total	Total%	Total Wtd.	Wtd. %
QHEI Score	0	0.0%	0	0.0%	6	2.9%	18	3.7%	12	5.8%	2.5%	18	8.7%	30	6.2%
QHEI Ratios	1	0.5%	5	1.0%	2	1.0%	6	1.2%	4	1.9%	0.8%	7	3.4%	15	3.1%
Substrate	4	1.9%	20	4.1%	2	1.0%	6	1.2%	8	3.8%	1.7%	14	6.7%	34	7.1%
#Poor Attributes	7	3.4%	35	7.3%	15	7.2%	45	9.3%	2	1.0%	0.4%	24	11.5%	82	17.0%
#Good Attributes	2	1.0%	10	2.1%	10	4.8%	30	6.2%	6	2.9%	1.2%	18	8.7%	46	9.5%
Channel Condition	1	0.5%	5	1.0%	2	1.0%	6	1.2%	10	4.8%	2.1%	13	6.3%	21	4.4%
Macro Habitat Related	15	3.1%	75	15.6%	37	17.8%	111	23.0%	42	20.2%	8.7%	94	45.2%	228	47.3%
TKN	0	0.0%	0	0.0%	0	0.0%	0	0.0%	4	1.9%	0.8%	4	1.9%	4	0.8%
Ammonia-N	0	0.0%	0	0.0%	0	0.0%	0	0.0%	0	0.0%	0.0%	0	0.0%	0	0.0%
Total P	0	0.0%	0	0.0%	0	0.0%	0	0.0%	7	3.4%	1.5%	7	3.4%	7	1.5%
Nitrate-N	1	0.5%	5	1.0%	4	1.9%	12	2.5%	8	3.8%	1.7%	13	6.3%	25	5.2%
Organic Enrichment	3	1.4%	15	3.1%	4	1.9%	12	2.5%	4	1.9%	0.8%	11	5.3%	31	6.4%
Organic/Nutrient_Enrichment	4	0.8%	20	4.1%	8	3.8%	24	5.0%	23	11.1%	4.8%	35	16.8%	67	13.9%
Minimum D.O.	2	1.0%	10	2.1%	5	2.4%	15	3.1%	4	1.9%	0.8%	11	5.3%	29	6.0%
Maximum D.O.	3	1.4%	15	3.1%	1	0.5%	3	0.6%	4	1.9%	0.8%	8	3.8%	22	4.6%
Diel D.O.	3	1.4%	15	3.1%	5	2.4%	15	3.1%	4	1.9%	0.8%	12	5.8%	34	7.1%
D.O. Related	8	3.8%	40	8.3%	11	5.3%	33	6.8%	12	5.8%	2.5%	31	14.9%	85	17.6%
Chlorides	3	1.4%	15	3.1%	11	5.3%	33	6.8%	7	3.4%	1.5%	21	10.1%	55	11.4%
Conductivity	0	0.0%	0	0.0%	0	0.0%	0	0.0%	9	4.3%	1.9%	9	4.3%	9	1.9%
TSS	3	1.4%	15	3.1%	0	0.0%	0	0.0%	0	0.0%	0.0%	3	1.4%	15	3.1%
Impervious 30	0	0.0%	0	0.0%	4	1.9%	12	2.5%	2	1.0%	0.4%	6	2.9%	14	2.9%
Impervious 500	0	0.0%	0	0.0%	0	0.0%	0	0.0%	8	3.8%	1.7%	8	3.8%	8	1.7%
Urban Related	6	2.9%	30	6.2%	15	7.2%	45	9.3%	26	12.5%	5.4%	47	22.6%	101	21.0%
Toxicity	0	0.0%	0	0.0%	0	0.0%	0	0.0%	1	0.5%	0.2%	1	0.5%	1	0.2%
Toxics	0	0.0%	0	0.0%	0	0.0%	0	0.0%	1	0.5%	0.2%	1	0.5%	1	0.2%
Total Observations	33	10.7%	165	34.2%	71	34.1%	213	44.2%	104	50.0%	21.6%	208	100.0%	482	100.0%